9,120 research outputs found

    Oxidative stress and muscle homeostasis

    Get PDF
    Purpose of review The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. Recent findings Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. Summary The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases.PURPOSE OF REVIEW: The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. RECENT FINDINGS: Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. SUMMARY: The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases

    Leaf apoplastic proteome composition in UV-B treated Arabidopsis thaliana mutants impaired in extracellular glutathione degradation

    Get PDF
    In plants, environmental perturbations often result in oxidative reactions in the apoplastic space, which are counteracted for by enzymatic and non-enzymatic antioxidative systems, including ascorbate and glutathione. The occurrence of the latter and its exact role in the extracellular space are not well documented, however. In Arabidopsis thaliana, the gamma-glutamyl transferase isoform GGT1 bound to the cell wall takes part in the so-called gamma-glutamyl cycle for extracellular glutathione degradation and recovery, and may be implicated in redox sensing and balance. In this work, oxidative conditions were imposed with UV-B radiation and studied in redox altered ggt1 mutants. Elevated UV-B has detrimental effects on plant metabolism, plasma membranes representing a major target for ROS generated by this harmful radiation. The response of ggt1 knockout Arabidopsis leaves to UV-B radiation was assessed by investigating changes in apoplastic protein composition. We then compared the expression changes resulting from the mutation and from the UV-B treatment. Rearrangements occurring in apoplastic protein composition suggest the involvement of hydrogen peroxide, which may ultimately act as a signal. Other important changes related to hormonal effects, cell wall remodeling, and redox activities are also reported. We argue that oxidative stress conditions imposed by UV-B and by disruption of the gamma-glutamyl cycle result in similar stress-induced responses, to some degree at least. Data shown here are associated with the article from Trentin et al. [1]; protein data have been deposited to the PRIDE database [2] with identifier PXD001807

    Dependability in wireless networks: can we rely on WiFi?

    Get PDF
    WiFi - short for "wireless fidelity" - is the commercial name for the 802.11 products that have flooded the corporate wireless local area network (WLAN) market and are becoming rapidly ingrained in our daily lives via public hotspots and digital home networks. Authentication and confidentiality are crucial issues for corporate WiFi use, but privacy and availability tend to dominate pervasive usage. However, because a technology's dependability requirements are proportional to its pervasiveness, newer applications mandate a deeper understanding of how much we can rely on WiFi and its security promises. In this article, we present an overview of WiFi vulnerabilities and investigate their proximate and ultimate origins. The intended goal is to provide a foundation to discuss WiFi dependability and its impact on current and future usage scenarios. Although a wireless network's overall security depends on the network stack to the application layer, this article focuses on specific vulnerabilities at the physical (PHY) and data (MAC) layers of 802.11 network

    Performance evaluation of an open distributed platform for realistic traffic generation

    Get PDF
    Network researchers have dedicated a notable part of their efforts to the area of modeling traffic and to the implementation of efficient traffic generators. We feel that there is a strong demand for traffic generators capable to reproduce realistic traffic patterns according to theoretical models and at the same time with high performance. This work presents an open distributed platform for traffic generation that we called distributed internet traffic generator (D-ITG), capable of producing traffic (network, transport and application layer) at packet level and of accurately replicating appropriate stochastic processes for both inter departure time (IDT) and packet size (PS) random variables. We implemented two different versions of our distributed generator. In the first one, a log server is in charge of recording the information transmitted by senders and receivers and these communications are based either on TCP or UDP. In the other one, senders and receivers make use of the MPI library. In this work a complete performance comparison among the centralized version and the two distributed versions of D-ITG is presented

    Longterm Influence of Inertia on the Diffusion of a Brownian Particle

    Get PDF
    We demonstrate experimentally that a Brownian particle is subject to inertial effects at long time scales. By using a blinking optical tweezers, we extend the range of previous experiments by several orders of magnitude up to a few seconds. The measured mean square displacement of a freely diffusing Brownian particle in a liquid shows a deviation from the Einstein-Smoluchowsky theory that diverges with time. These results are consistent with a generalized theory that takes into account not only the particle inertia but also the inertia of the fluid surrounding the particle. This can lead to a bias in the estimation of the diffusion coefficient from finite-time measurements. We show that the decay of the relative error is polynomial and not exponential and, therefore, can have significant effects at time scales relevant for experiments.Comment: 5 pages, 4 figure

    Two electrodeposition strategies for the morphology-controlled synthesis of cobalt nanostructures

    Get PDF
    In this contribution, two different strategies are discussed to synthesize cobalt nanostructures: direct cobalt electrodeposition on a planar aluminum electrode and cobalt electrodeposition into nanoporous alumina templates generated by aluminum anodization (template electrodeposition). In the direct electrodeposition of cobalt on aluminum, cobalt nanoparticles are formed during the early stage of electrodeposition, which causes the depletion of cobalt ions near the electrode. Water reduction then takes place catalyzed by electrodeposited cobalt nanoparticles, which increases the pH near the electrode and can induce cobalt hydroxide precipitation. By varying the electrode potential and the cobalt ion concentration, the interplay between electrochemical growth of cobalt and water reduction could be controlled to induce transition from cobalt hexagonal nano-platelets to nanostructured films composed of cobalt nanoparticles and cobalt hydroxide nano-flakes. Cobalt nanowires can be synthesized by electrodeposition into nanoporous alumina templates generated by aluminum anodization. This approach typically involves the application of alumina templates produced by a two-step anodization procedure: the alumina nanoporous layer generated by a first anodization is dissolved in a chromic acid solution while a very ordered alumina nanoporous layer is produced by a second anodization stage. In accordance with previous studies, this procedure is fundamental to achieve uniform filling of the nanopores in the subsequent electrodeposition stage. In the present study, uniform filling of the nanoporous alumina generated by one-step anodization could be achieved by the electrodeposition of cobalt nanowires. This result was made possible by the application of a novel pulsed electrodeposition strategy
    • …
    corecore