33,711 research outputs found

    Microlensing By a Prolate All-Macho Halo

    Get PDF
    It is widely believed that dark matter halos are flattened, that is closer to oblate than prolate. The evidence cited is based largely on observations of galaxies which do not look anything like our own and on numerical simulations which use ad hoc initial conditions. Given what we believe to be a ``reasonable doubt'' concerning the shape of dark Galactic halo we calculate the optical depth and event rate for microlensing of stars in the LMC assuming a wide range of models that include both prolate and oblate halos. We find, in agreement with previous analysis, that the optical depth for a spherical (E0) halo and for an oblate (E6) halo are roughly the same, essentially because two competing effects cancel approximately. However the optical depth for an E6 prolate halo is reduced by ~35%. This means that an all-Macho prolate halo with reasonable parameters for the Galaxy is consistent with the published microlensing event rate.Comment: 7 pages (24K), LaTeX; 2 Postscript figure

    Playing Quantum Physics Jeopardy with zero-energy eigenstates

    Full text link
    We describe an example of an exact, quantitative Jeopardy-type quantum mechanics problem. This problem type is based on the conditions in one-dimensional quantum systems that allow an energy eigenstate for the infinite square well to have zero curvature and zero energy when suitable Dirac delta functions are added. This condition and its solution are not often discussed in quantum mechanics texts and have interesting pedagogical consequences.Comment: 8 pages, 3 figures, requires graphicx and epsfig packages. Additional information, including individual files containing the Worksheet and a Worksheet template, are available at http://webphysics.davidson.edu/mjb/jeopardy

    Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease

    Get PDF
    Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman's vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not "uropathogenic" in the classic sense. This "covert pathogenesis" paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance

    Self-oscillating control methods for the LCC current-output resonant converter

    Get PDF
    Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators. The method is shown to have a similar effect as controlling the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes. However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants

    Design of an LCC current-output resonant converter for use as a constant current source

    Get PDF
    A methodology for the design of LCC resonant current-source converters, is presented. Unlike previous techniques, the resulting converter provides near constant steady-state output current over an extended load range when excited at the resonant frequency, through use of a self-oscillating controlle

    Normalized analysis and design of LCC resonant converters

    Get PDF
    Abstract—A normalization of the LCC voltage-output resonant converter performance characteristics, in terms of the tank gain at resonance and the parallel-to-series-capacitor ratio, is presented. The resulting description is subsequently used for the derivation of a design procedure that incorporates the effects of diode losses and the finite charge/discharge time of the parallel capacitor. Unlike previously reported techniques, the resulting normalized behavior of the converter is used to identify design regions to facilitate a reduction in component electrical stresses, and the use of harmonics to transfer real power. Consideration of the use of preferred component values is also given. The underlying methodology is ultimately suitable for incorporation into a software suite for use as part of a rapid interactive design tool. Both simulation results and experimental measurements from a prototype converter are included to demonstrate the attributes of the proposed analysis and design methodologies

    Control-system techniques for improved departure/spin resistance for fighter aircraft

    Get PDF
    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability
    corecore