28 research outputs found
Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair.
The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFA) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) have shown beneficial effects on learning and memory, neuroinflammatory processes and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-archidonoylglycerol (2-AG) are the most widely studied endocannabinoids, and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair
Beziehung zwischen Arabinogalactanen und der Dichte, der Wuchsleistung und der Scherfestigkeit angebauter sibirischer Schnellwuchslärchen
Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice
BRAIN ACTIVITY ASSOCIATED WITH TRANSLATION BETWEEN GRAPHICAL AND SYMBOLIC REPRESENTATIONS OF FUNCTIONS IN GENERALLY GIFTED AND EXCELLING IN MATHEMATICS ADOLESCENTS
A modified artificial neural network based prediction technique for tropospheric radio refractivity
Regional cerebral effects of ketone body infusion with 3-hydroxybutyrate in humans: Reduced glucose uptake, unchanged oxygen consumption and increased blood flow by positron emission tomography. A randomized, controlled trial
Ketone bodies are neuroprotective in neurological disorders such as epilepsy. We randomly studied nine healthy human subjects twice—with and without continuous infusion of 3-hydroxybutyrate–to define potential underlying mechanisms, assessed regionally (parietal, occipital, temporal, cortical grey, and frontal) by PET scan. During 3-hydroxybutyrate infusions concentrations increased to 5.5±0.4 mmol/l and cerebral glucose utilisation decreased 14%, oxygen consumption remained unchanged, and cerebral blood flow increased 30%. We conclude that acute 3-hydroxybutyrate infusion reduces cerebral glucose uptake and increases cerebral blood flow in all measured brain regions, without detectable effects on cerebral oxygen uptake though oxygen extraction decreased. Increased oxygen supply concomitant with unchanged oxygen utilisation may contribute to the neuroprotective effects of ketone bodies.</div
