66 research outputs found
Cobalamin supplementation during in vitro maturation improves developmental competence of sheep oocytes
Abstract Pregnancies obtained by Assisted Reproductive Technologies are at higher risk of miscarriage than those obtained naturally. Previously, we reported impaired placental vascular development of in vitro produced (IVP) sheep embryos and defective DNA methylation in the placentae of those embryos. One reason behind these observed defects may be an impaired One Carbon Metabolism (OCM) The present study was performed to test the hypothesis that Cobalamin (Vitamin B12, an important OCM co-factor) supplementation during IVM corrects DNA methylation of IVP embryos and, consequently, ameliorates placental vasculogenesis. To this aim, embryos derived from oocytes matured with Cobalamin (B12 group) or without (negative control group, −CTR) were transferred to synchronized recipient sheep. At day 20 of pregnancy, collected embryos were morphologically evaluated while placentae were subjected to qPCR and histological analysis. The positive control group (+CTR) consisted of conceptuses obtained from naturally mated sheep. Results showed an increased fertilization rate in the B12 group vs –CTR (69.56% vs 57.91% respectively, P = 0.006) not associated with quantitative improvement in blastocyst and/or implantation rate (44.32% vs 36.67% respectively, P > 0.05). Moreover, Cobalamin supplementation during oocyte IVM ameliorated resulting conceptuses quality, in terms of placental vascularization (vessels' maturity and vasculogenetic factors' expression). The expression of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was also improved in placentae from the B12 group. In conclusion, Cobalamin supplementation during oocyte IVM improves IVP embryo quality. These results suggest that Cobalamin should be included in standard IVM media
Trauma management incorporating focused assessment with computed tomography in trauma (FACTT) - potential effect on survival
Background
Immediate recognition of life-threatening conditions and injuries is the key to trauma management. To date, the impact of focused assessment with computed tomography in trauma (FACTT) has not been formally assessed. We aimed to find out whether the concept of using FACTT during primary trauma survey has a negative or positive effect on survival.
Methods
In a retrospective, multicentre study, we compared our time management and probability of survival (Ps) in major trauma patients who received FACTT during trauma resuscitation with the trauma registry of the German Trauma Society (DGU). FACTT is defined as whole-body computed tomography (WBCT) during primary trauma survey. We determined the probability of survival according to the Trauma and Injury Severity Score (TRISS), the Revised Injury Severity Classification score (RISC) and the standardized mortality ratio (SMR).
Results
We analysed 4.817 patients from the DGU database from 2002 until 2004, 160 (3.3%) were from our trauma centre at the Ludwig-Maximilians-University (LMU) and 4.657 (96.7%) from the DGU group. 73.2% were male with a mean age of 42.5 years, a mean ISS of 29.8. 96.2% had suffered from blunt trauma. Time from admission to FAST (focused assessment with sonography for trauma)(4.3 vs. 8.7 min), chest x-ray (8.1 vs. 16.0 min) and whole-body CT (20.7 vs. 36.6 min) was shorter at the LMU compared to the other trauma centres (p < 0.001). SMR calculated by TRISS was 0.74 (CI95% 0.40-1.08) for the LMU (p = 0.24) and 0.92 (CI95% 0.84-1.01) for the DGU group (p = 0.10). RISC methodology revealed a SMR of 0.69 (95%CI 0.47-0.92) for the LMU (p = 0.043) and 1.00 (95%CI 0.94-1.06) for the DGU group (p = 0.88).
Conclusion
Trauma management incorporating FACTT enhances a rapid response to life-threatening problems and enables a comprehensive assessment of the severity of each relevant injury. Due to its speed and accuracy, FACTT during primary trauma survey supports rapid decision-making and may increase survival
Laser ablation of Dbx1 neurons in the pre-Botzinger complex stops inspiratory rhythm and impairs output in neonatal mice
To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Botzinger complex (preBotC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBotC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85 +/- 20 (mean +/- SEM) cellular ablations, which corresponds to similar to 15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states
Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution
In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC content and rates of evolution
The Use of PRV-Bartha to Define Premotor Inputs to Lumbar Motoneurons in the Neonatal Spinal Cord of the Mouse
The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons.Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24-32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32-40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8-12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells.The study establishes the time window for virally-labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks
Recombination Drives Vertebrate Genome Contraction
Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process
DIA1R Is an X-Linked Gene Related to Deleted In Autism-1
Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik
- …