1,176 research outputs found
Predicting Data Quality Success - The Bullwhip Effect in Data Quality
Over the last years many data quality initiatives and suggestions report how to improve and sustain data quality. However, almost all data quality projects and suggestions focus on the assessment and one-time quality improvement, especially, suggestions rarely include how to sustain the continuous data quality improvement. Inspired by the work related to variability in supply chains, also known as the Bullwhip effect, this paper aims to suggest how to sustain data quality improvements and investigate the effects of delays in reporting data quality indicators. Furthermore, we propose that a data quality prediction model can be used as one of countermeasures to reduce the Data Quality Bullwhip Effect. Based on a real-world case study, this paper makes an attempt to show how to reduce this effect. Our results indicate that data quality success is a critical practice, and predicting data quality improvements can be used to decrease the variability of the data quality index in a long run
A saturated red color converter for visible light communication using a blend of star-shaped organic semiconductors
Authors would like to acknowledge the EPSRC for financial support for the UP-VLC (EP/K00042X/1). PJS and IDWS also acknowledge Royal Society Wolfson Research Merit Awards.We report a study of blends of semiconducting polymers as saturated red color converters to replace commercial phosphors in hybrid LEDs for visible light communication (VLC). By blending two star-shaped organic semiconductor molecules, we found a near complete energy transfer (> 90% efficiency) from the green-emitting truxene-cored compound T4BT-B to the red-emitting boron dipyrromethene (BODIPY) cored materials. Furthermore, we have demonstrated the capability of these materials as fast color converters for VLC by measuring their intrinsic optical modulation bandwidth and data rate. The measured 3 dB modulation bandwidth of blends (~55 MHz) is more than 10 times higher than commercially available LED phosphors and also higher than the red-emitting BODIPY color converter alone in solution. The data rate achieved with this blend is 20 times higher than measured with a commercially available phosphor based color converter.PostprintPeer reviewe
Put My Skills to Use? Understanding the Joint Effect of Job Security and Skill Utilization on Job Satisfaction Between Skilled Migrants and Australian Born Workers in Australia
The topic of skilled migrants has gained importance in the past decade as they are increasingly becoming one of the main drivers for labor supply in developed countries like Australia. Although there is research on skilled migrants, most have been studied from the perspectives of (un)employment, wage and over-education. Some evidence suggests that skilled migrants are often less satisfied with their job compared to their local counterparts, yet little is known about why these differences exist. Using a nationally representative sample of Australian workers, we examine how two important job characteristics, job security and skill utilization, exert their differential interaction effect on job satisfaction for skilled migrants and Australian born workers. We found a differential moderation effect between job security and skill utilization for skilled migrants and Australian born workers. For skilled migrants, high job security did not lead to positive reaction (i.e., job satisfaction), as this effect was dependent on their skill utilization; while such moderation effect was not present for Australian born workers. This study highlights the need to take a more fine-tuned approach by understanding target sample groups (e.g., skilled migrants) when study the relationship between key job characteristics and job satisfaction. Furthermore, it highlights the importance for organizations to revisit their human resource management strategies and policies to recognize the needs for enhancing skill utilization for skilled migrants
High-definition endoscopy with digital chromoendoscopy for histologic prediction of distal colorectal polyps
Background
Distal diminutive colorectal polyps are common and accurate endoscopic prediction of hyperplastic or adenomatous polyp histology could reduce procedural time, costs and potential risks associated with the resection. Within this study we assessed whether digital chromoendoscopy can accurately predict the histology of distal diminutive colorectal polyps according to the ASGE PIVI statement.
Methods
In this prospective cohort study, 224 consecutive patients undergoing screening or surveillance colonoscopy were included. Real time histology of 121 diminutive distal colorectal polyps was evaluated using high-definition endoscopy with digital chromoendoscopy and the accuracy of predicting histology with digital chromoendoscopy was assessed.
Results
The overall accuracy of digital chromoendoscopy for prediction of adenomatous polyp histology was 90.1 %. Sensitivity, specificity, positive and negative predictive values were 93.3, 88.7, 88.7, and 93.2 %, respectively. In high-confidence predictions, the accuracy increased to 96.3 % while sensitivity, specificity, positive and negative predictive values were calculated as 98.1, 94.4, 94.5, and 98.1 %, respectively. Surveillance intervals with digital chromoendoscopy were correctly predicted with >90 % accuracy.
Conclusions
High-definition endoscopy in combination with digital chromoendoscopy allowed real-time in vivo prediction of distal colorectal polyp histology and is accurate enough to leave distal colorectal polyps in place without resection or to resect and discard them without pathologic assessment. This approach has the potential to reduce costs and risks associated with the redundant removal of diminutive colorectal polyps
Recommended from our members
The Periplasmic Chaperone Network of Campylobacter jejuni: Evidence that SalC (Cj1289) and PpiD (Cj0694) Are Involved in Maintaining Outer Membrane Integrity
The outer membrane (OM) of Gram-negative pathogenic bacteria is a key structure in host–pathogen interactions that contains a plethora of proteins, performing a range of functions including adhesion, nutrient uptake, export of effectors and interaction with innate and adaptive components of the immune system. In addition, the OM can exclude drugs and thus contribute to antimicrobial resistance. The OM of the food-borne pathogen Campylobacter jejuni contains porins, adhesins and other virulence factors that must be specifically localized to this membrane, but the protein sorting mechanisms involved are only partially understood. In particular, chaperones are required to ferry OM proteins across the periplasm after they emerge from the Sec translocation system. The SurA-related chaperone PEB4 (Cj0596) is the only protein with a proven role in OM biogenesis and integrity in C. jejuni. In this work, we have constructed a set of isogenic deletion mutants in genes encoding both known and predicted chaperones (cj0596, cj0694, cj1069, cj1228c, and cj1289) using NCTC 11168H as the parental strain. These mutants were characterized using a range of assays to determine effects on growth, agglutination, biofilm formation, membrane permeability and hydrophobicity. We focused on Cj1289 and Cj0694, which our previous work suggested possessed both chaperone and peptidyl-proyl cis/trans isomerase (PPIase) domains. Mutants in either cj1289 or cj0694 showed growth defects, increased motility, agglutination and biofilm formation and severe OM permeability defects as measured by a lysozyme accessibility assay, that were comparable to those exhibited by the isogenic peb4 mutant. 2D-gel comparisons showed a general decrease in OM proteins in these mutants. We heterologously overproduced and purified Cj0694 and obtained evidence that this protein was an active PPIase, as judged by its acceleration of the refolding rate of reduced and alkylated ribonuclease T1 and that it also possessed holdase-type chaperone activity. Cj0694 is most similar to the PpiD class of chaperones but is unusual in possessing PPIase activity. Taken together, our data show that in addition to PEB4, Cj1289 (SalC; SurA-like chaperone) and Cj0694 (PpiD) are also key proteins involved in OM biogenesis and integrity in C. jejuni
Coracoid impingement syndrome: a literature review
Coracoid impingement syndrome is a less common cause of shoulder pain. Symptoms are presumed to occur when the subscapularis tendon impinges between the coracoid and lesser tuberosity of the humerus. Coracoid impingement should be included in the differential diagnosis when evaluating a patient with activity-related anterior shoulder pain. It is not thought to be as common as subacromial impingement, and the possibility of the coexistence of the two conditions must be taken into consideration before treatment of either as an isolated process. If nonoperative treatment fails to relieve symptoms, surgical decompression can be offered as an option
Optimization of friction welding process parameters for 42Cr9Si2 hollow head and sodium filled engine valve and valve performance evaluation
Due to their design, hollow cavity and filled sodium, hollow head and sodium filled engine valves (HHSVs) have superior performance to traditional solid valves in terms of mass and temperature reduction. This paper presents a new manufacturing method for 42Cr9Si2 steel hollow head and sodium filled valves. An inertia friction welding process parameter optimization was conducted to obtain a suitable process parameter range. The fatigue strength of 42Cr9Si2 steel at elevated temperatures was evaluated by rotating bending fatigue test with material specimens. Performance evaluation tests for real valve components were then carried out using a bespoke bench-top apparatus, as well as a stress evaluation utilizing a finite element method. It was proved that the optimized friction welding parameters of HHSV can achieve good welding quality and performance, and the HHSV specimen successfully survived defined durability tests proving the viability of this new method. The wear resistance of the HHSV specimens was evaluated and the corresponding wear mechanisms were found to be those classically defined in automotive valve wear
Microbial diversity arising from thermodynamic constraints
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilize different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first-principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments
Online 4D ultrasound guidance for real-time motion compensation by MLC tracking
PURPOSE: With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. METHODS: A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2%/2 mm γ-tests. RESULTS: The overall tracking system latency was 172 ms. The mean 2D root-mean-square tracking error was 1.03 mm (0.80 mm prostate, 1.31 mm lung). MLC tracking improved the dose delivery in all cases with an overall reduction in the γ-failure rate of 91.2% (3%/3 mm) and 89.9% (2%/2 mm) compared to no motion compensation. Low modulation VMAT plans had no (3%/3 mm) or minimal (2%/2 mm) residual γ-failures while tracking reduced the γ-failure rate from 17.4% to 2.8% (3%/3 mm) and from 33.9% to 6.5% (2%/2 mm) for plans with high modulation. CONCLUSIONS: Real-time 4D ultrasound tracking was successfully integrated with online MLC tracking for the first time. The developed framework showed an accuracy and latency comparable with other MLC tracking methods while holding the potential to measure and adapt to target motion, including rotation and deformation, noninvasively
The evolution of tooth wear indices
Tooth wear—attrition, erosion and abrasion—is perceived internationally as an ever-increasing problem. Clinical and epidemiological studies, however, are difficult to interpret and compare due to differences in terminology and the large number of indices that have been developed for diagnosing, grading and monitoring dental hard tissue loss. These indices have been designed to identify increasing severity and are usually numerical. Some record lesions on an aetiological basis (e.g. erosion indices), others record lesions irrespective of aetiology (tooth wear indices); none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. It reviews the literature to consider how current indices have evolved and discusses if these indices meet the clinical and research needs of the dental profession
- …