12 research outputs found

    Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality

    No full text
    It has been reported that mental stress causes abnormality of spermiogram parameters. We investigated the effect of psychological stress on the L-arginine-nitric oxide (NO) pathway. Semen samples were collected from 29 healthy fourth semester medical students just before (stress) and 3 months after (non-stress) the final examinations. Psychological stress was measured by the State Anxiety Inventory questionnaire. After standard semen analysis, arginase activity and NO concentration were measured spectrophotometrically in the seminal plasma. Measurements were made in duplicate. During the stress period, sperm concentration (41.28 ± 3.70 vs 77.62 ± 7.13 x 10(6)/mL), rapid progressive motility of spermatozoa (8.79 ± 1.66 vs 20.86 ± 1.63%) and seminal plasma arginase activity (0.12 ± 0.01 vs 0.22 ± 0.01 U/mL) were significantly lower than in the non-stress situation, whereas seminal plasma NO (17.28 ± 0.56 vs 10.02 ± 0.49 µmol/L) was higher compared to the non-stress period (P < 0.001 for all). During stress there was a negative correlation between NO concentration and sperm concentration, the percentage of rapid progressive motility and arginase activity (r = -0.622, P < 0.01; r = -0.425, P < 0.05 and r = -0.445, P < 0.05, respectively). These results indicate that psychological stress causes an increase of NO level and a decrease of arginase activity in the L-arginine-NO pathway. Furthermore, poor sperm quality may be due to excessive production of NO under psychological stress. In the light of these results, we suggest that the arginine-NO pathway, together with arginase and NO synthase, are involved in semen quality under stress conditions

    Epidemiology and aetiology of heart failure.

    No full text
    Heart failure (HF) is a rapidly growing public health issue with an estimated prevalence of &gt;37.7 million individuals globally. HF is a shared chronic phase of cardiac functional impairment secondary to many aetiologies, and patients with HF experience numerous symptoms that affect their quality of life, including dyspnoea, fatigue, poor exercise tolerance, and fluid retention. Although the underlying causes of HF vary according to sex, age, ethnicity, comorbidities, and environment, the majority of cases remain preventable. HF is associated with increased morbidity and mortality, and confers a substantial burden to the health-care system. HF is a leading cause of hospitalization among adults and the elderly. In the USA, the total medical costs for patients with HF are expected to rise from US20.9billionin2012to20.9 billion in 2012 to 53.1 billion by 2030. Improvements in the medical management of risk factors and HF have stabilized the incidence of this disease in many countries. In this Review, we provide an overview of the latest epidemiological data on HF, and propose future directions for reducing the ever-increasing HF burden

    Cardiorenal syndrome: pathophysiology and potential targets for clinical management

    No full text
    Combined dysfunction of the heart and the kidneys, which can be associated with haemodynamic impairment, is classically referred to as cardiorenal syndrome (CRS). Cardiac pump failure with resulting volume retention by the kidneys, once thought to be the major pathophysiologic mechanism of CRS, is now considered to be only a part of a much more complicated phenomenon. Multiple body systems may contribute to the development of this pathologic constellation in an interconnected network of events. These events include heart failure (systolic or diastolic), atherosclerosis and endothelial cell dysfunction, uraemia and kidney failure, neurohormonal dysregulation, anaemia and iron disorders, mineral metabolic derangements including fibroblast growth factor 23, phosphorus and vitamin D disorders, and inflammatory pathways that may lead to malnutrition-inflammation-cachexia complex and protein-energy wasting. Hence, a pathophysiologically and clinically relevant classification of CRS based on the above components would be prudent. With the existing medical knowledge, it is almost impossible to identify where the process has started in any given patient. Rather, the events involved are closely interrelated, so that once the process starts at a particular point, other pathways of the network are potentially activated. Current therapies for CRS as well as ongoing studies are mostly focused on haemodynamic adjustments. The timely targeting of different components of this complex network, which may eventually lead to haemodynamic and vascular compromise and cause refractoriness to conventional treatments, seems necessary. Future studies should focus on interventions targeting these components
    corecore