62 research outputs found
Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments
Early changes in the haemostatic and procoagulant systems after chemotherapy for breast cancer
Venous thromboembolism (VTE) following breast cancer chemotherapy is common. Chemotherapy-induced alterations in markers of haemostasis occur during chemotherapy. It is unclear how rapidly this occurs, whether this is upregulated in patients developing VTE and whether changes predict for VTE. Markers of haemostasis, functional clotting assays and vascular endothelial growth factor were measured before chemotherapy and at 24âh, 4 days, 8 days and 3 months following commencement of chemotherapy in early and advanced breast cancer patients and in age- and sex-matched controls. Duplex ultrasound imaging was performed after 1 month or if symptomatic. Of 123 patients, 9.8% developed VTE within 3 months. Activated partial thromboplastin time (APTT), prothrombin time (PT), D-dimer, fibrinogen, platelet count, VEGF and fibrinogen were increased in cancer. Fibrinogen, D-dimer, VEGF and tissue factor were increased, at baseline, in patients subsequently developing VTE. D-dimer of less than 500ângâmlâ1 has a negative predictive value of 97%. Activated partial thromboplastin time, PT and thrombinâantithrombin showed significantly different trends, as early as within 24âh, in response to chemotherapy in patients subsequently developing VTE. Markers of coagulation and procoagulants are increased, before chemotherapy, in patients who subsequently develop VTE. A group of patients at minimal risk of VTE can be identified, allowing targeted thrombopropylaxis to the higher risk group
Molecular epidemiology of drug-resistant malaria in western Kenya highlands
<p>Abstract</p> <p>Background</p> <p>Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated.</p> <p>Methods</p> <p>Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with <it>Plasmodium falciparum </it>resistance to sulfadoxine â pyrimethamine and chloroquine, including dihydrofolate reductase (<it>pfdhfr</it>) and dihydropteroate synthetase (<it>pfdhps</it>), chloroquine resistance transporter gene (<it>pfcrt</it>), and multi-drug resistance gene 1 (<it>pfmdr1</it>).</p> <p>Results</p> <p>We found that >70% of samples harbored 76T <it>pfcrt </it>mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N <it>pfdhfr </it>and 437G/540E <it>pfdhps</it>) in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples.</p> <p>Conclusion</p> <p>These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.</p
Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour
In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad AutĂłnoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP
- âŠ