9,782 research outputs found
Recommended from our members
Charge delocalization characteristics of regioregular high mobility polymers.
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while the reorganizational energies calculated are quite similar across the molecular family. This work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties
How to measure monetary losses in gambling disorder? An evidence-based refinement.
Diverse monetary measures have been utilized across different studies in gambling disorder (GD). However, there are limited evidence-based proposals regarding the best way to assess financial losses. We investigated how different variables of monetary losses correlate with validated assessments of gambling severity and overall functioning in a large sample of subjects with GD (n = 436). We found that relative monetary variables (i.e. when financial losses were evaluated in relation to personal income) showed the most robust correlations with gambling severity and overall psychosocial functioning. Percentage of monthly income lost from gambling was the variable with the best performance.
Keywords:Open Access funded by Wellcome Trus
General Form of the Color Potential Produced by Color Charges of the Quark
Constant electric charge satisfies the continuity equation where is the current density of the electron.
However, the Yang-Mills color current density of the quark
satisfies the equation which is not a continuity
equation () which implies that a color charge
of the quark is not constant but it is time dependent where
are color indices. In this paper we derive general form of color
potential produced by color charges of the quark. We find that the general form
of the color potential produced by the color charges of the quark at rest is
given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm
exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr
\frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where integration is an indefinite
integration, ~~ , ~~, ~~ is the retarded time, ~~ is the speed
of light, ~~ is the position of the quark at the retarded
time and the repeated color indices (=1,2,...8) are summed. For constant
color charge we reproduce the Coulomb-like potential
which is consistent with the Maxwell theory where
constant electric charge produces the Coulomb potential
.Comment: Final version, two more sections added, 45 pages latex, accepted for
publication in JHE
Predator-Induced Vertical Behavior of a Ctenophore
Although many studies have focused on Mnemiopsis leidyi predation, little is known about the role of this ctenophore as prey when abundant in native and invaded pelagic systems. We examined the response of the ctenophore M. leidyi to the predatory ctenophore Beroe ovata in an experiment in which the two species could potentially sense each other while being physically separated. On average, M. leidyi responded to the predator’s presence by increasing variability in swimming speeds and by lowering their vertical distribution. Such behavior may help explain field records of vertical migration, as well as stratified and near-bottom distributions of M. leidyi
Spatially-resolved electronic and vibronic properties of single diamondoid molecules
Diamondoids are a unique form of carbon nanostructure best described as
hydrogen-terminated diamond molecules. Their diamond-cage structures and
tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic
band gaps, optical properties, thermal transport, and mechanical strength at
the nanoscale. The recently-discovered higher diamondoids (each containing more
than three diamond cells) have thus generated much excitement in regards to
their potential versatility as nanoscale devices. Despite this excitement,
however, very little is known about the properties of isolated diamondoids on
metal surfaces, a very relevant system for molecular electronics. Here we
report the first molecular scale study of individual tetramantane diamondoids
on Au(111) using scanning tunneling microscopy and spectroscopy. We find that
both the diamondoid electronic structure and electron-vibrational coupling
exhibit unique spatial distributions characterized by pronounced line nodes
across the molecular surfaces. Ab-initio pseudopotential density functional
calculations reveal that the observed dominant electronic and vibronic
properties of diamondoids are determined by surface hydrogen terminations, a
feature having important implications for designing diamondoid-based molecular
devices.Comment: 16 pages, 4 figures. to appear in Nature Material
Modelling production-consumption flows of goods in Europe: the trade model within Transtools3
The paper presents a new model for trade flows in Europe that is integrated with a logistics model for transport chain choice through Logsum variables. Logsums measures accessibility across an entire multi-modal logistical chain, and are calculated from a logistics model that has been estimated on disaggregated micro data and then used as an input variable in the trade model. Using Logsums in a trade model is new in applied large-scale freight models, where previous models have simply relied on the distance (e.g. crow-fly) between zones. This linkage of accessibility to the trade model makes it possible to evaluate how changes in policies on transport costs and changes in multi-modal networks will influence trade patterns. As an example the paper presents outcomes for a European-wide truck tolling scenario, which showcases to which extent trade is influenced by such a policy. The paper discusses how such a complex model can be estimated and considers the choice of mathematical formulation and the link between the trade model and logistics model. In the outcomes for the tolling scenario we decompose the total effects into effects from the trade model and effects from the logistics model
Plasma Homeostasis and Cloacal Urine Composition in Crocodylus porosus Caught Along a Salinity Gradient
Juveniles of the Estuarine or Saltwater Crocodile, Crocodylus porosus, maintain both osmotic pressure and plasma electrolyte homeostasis along a salinity gradient from fresh water to the sea. In fresh water (FW) the cloacal urine is a clear solution rich in ammonium and bicarbonate and containing small amounts of white precipitated solids with high concentrations of calcium and magnesium. In salt water (SW) the cloacal urine has a much higher proportion of solids, cream rather than white in colour, which are the major route for excretion of potassium in addition to calcium and magnesium. Neither liquid nor solid fractions of the cloacal urine represent a major route for excretion of sodium chloride. The solids are urates and uric acid, and their production probably constitutes an important strategy for water conservation by C. porosus in SW. These data, coupled with natural history observations and the recent identification of lingual salt glands, contribute to the conclusion that C. porosus is able to live and breed in either fresh or salt water and may be as euryhaline as any reptile
Regular Incidence Complexes, Polytopes, and C-Groups
Regular incidence complexes are combinatorial incidence structures
generalizing regular convex polytopes, regular complex polytopes, various types
of incidence geometries, and many other highly symmetric objects. The special
case of abstract regular polytopes has been well-studied. The paper describes
the combinatorial structure of a regular incidence complex in terms of a system
of distinguished generating subgroups of its automorphism group or a
flag-transitive subgroup. Then the groups admitting a flag-transitive action on
an incidence complex are characterized as generalized string C-groups. Further,
extensions of regular incidence complexes are studied, and certain incidence
complexes particularly close to abstract polytopes, called abstract polytope
complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder,
A. Deza, and A. Ivic Weiss (eds), Springe
Predictive feedback control and Fitts' law
Fitts’ law is a well established empirical formula, known for encapsulating the “speed-accuracy trade-off”. For discrete, manual movements from a starting location to a target, Fitts’ law relates movement duration to the distance moved and target size. The widespread empirical success of the formula is suggestive of underlying principles of human movement control. There have been previous attempts to relate Fitts’ law to engineering-type control hypotheses and it has been shown that the law is exactly consistent with the closed-loop step-response of a time-delayed, first-order system. Assuming only the operation of closed-loop feedback, either continuous or intermittent, this paper asks whether such feedback should be predictive or not predictive to be consistent with Fitts law. Since Fitts’ law is equivalent to a time delay separated from a first-order system, known control theory implies that the controller must be predictive. A predictive controller moves the time-delay outside the feedback loop such that the closed-loop response can be separated into a time delay and rational function whereas a non- predictive controller retains a state delay within feedback loop which is not consistent with Fitts’ law. Using sufficient parameters, a high-order non-predictive controller could approximately reproduce Fitts’ law. However, such high-order, “non-parametric” controllers are essentially empirical in nature, without physical meaning, and therefore are conceptually inferior to the predictive controller. It is a new insight that using closed-loop feedback, prediction is required to physically explain Fitts’ law. The implication is that prediction is an inherent part of the “speed-accuracy trade-off”
<i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis
Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops
- …
