79 research outputs found
A genetic atlas of human admixture history
Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations
Iron Age and Anglo-Saxon genomes from East England reveal British migration history
British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain
Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach
The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data
Impacts of climate change on plant diseases – opinions and trends
There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods
Dyadic adjustment, family coping, body image, quality of life and psychological morbidity in patients with psoriasis and their partners
Background Psoriasis is an incurable and chronic disease
that includes unpredictable periods of remission and relapse
requiring long-term therapy.
Purpose This paper focuses on the relationship among
family coping, psychological morbidity, body image,
dyadic adjustment and quality of life in psoriatic patients
and their partners.
Method One hundred and one patients with psoriasis and
78 partners comprised the sample. They were regular users
of the Dermatology Service of a Central Northern hospital
in Portugal and a private dermatology clinic. Patients with
psoriasis were assessed on anxiety, depression, body image,
quality of life, dyadic adjustment and family coping.
Partners were assessed on the same measures except body
image and quality of life.
Results A positive relationship among dyadic adjustment,
psychological morbidity and family coping in patients and
their partners was found. Also, patients with lower levels of
quality of life had partners with higher levels of depressive
and anxious symptoms. Better dyadic adjustment predicted
family coping in the psoriatic patient. High levels of dyadic
adjustment in patients and low partners’ trait anxiety
predicted better dyadic adjustment in partners.
Conclusion The results highlight the importance of incorporating
family variables in psychological interventions in
psoriasis’ care, particularly family coping and dyadic
adjustment as well as the need for psychological intervention
to focus both on patients and partners
Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans
The Southern African Human Genome Programme is a national initiative that aspires to
unlock the unique genetic character of southern African populations for a better understanding
of human genetic diversity. In this pilot study the Southern African Human Genome
Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern
Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique
variants are identified. Despite the shallow time depth since divergence between the two
main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component
analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis
identifies regions with high divergence. The Coloured individuals show evidence of varying
proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the
Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity,
increasing our understanding of the complex and region-specific history of African populations
and highlighting its potential impact on biomedical research and genetic susceptibility to
disease
Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.
BACKGROUND: According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country.
METHODS/PRINCIPAL FINDINGS: A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers.
CONCLUSIONS/SIGNIFICANCE: Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …