12 research outputs found

    Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso

    Get PDF
    BACKGROUND: Provision of routine iron supplements to prevent anaemia could increase the risk for lower genital tract infections as virulence of some pathogens depends on iron availability. This trial in Burkina Faso assessed whether weekly periconceptional iron supplementation increased the risk of lower genital tract infection in young non-pregnant and pregnant women. METHODS: Genital tract infections were assessed within a double blind, controlled, non-inferiority trial of malaria risk among nulliparous women, randomised to receive either iron and folic acid or folic acid alone, weekly, under direct observation for 18 months. Women conceiving during this period entered the pregnancy cohort. End assessment (FIN) for women remaining non-pregnant was at 18 months. For the pregnancy cohort, end assessment was at the first scheduled antenatal visit (ANC1). Infection markers included Nugent scores for abnormal flora and bacterial vaginosis (BV), T. vaginalis PCR, vaginal microbiota, reported signs and symptoms, and antibiotic and anti-fungal prescriptions. Iron biomarkers were assessed at baseline, FIN and ANC1. Analysis compared outcomes by intention to treat and in iron replete/deficient categories. RESULTS: A total of 1954 women (mean 16.8 years) were followed and 478 (24.5%) became pregnant. Median supplement adherence was 79% (IQR 59-90%). Baseline BV prevalence was 12.3%. At FIN and ANC1 prevalence was 12.8% and 7.0%, respectively (P < 0.011). T. vaginalis prevalence was 4.9% at FIN and 12.9% at ANC1 (P < 0.001). BV and T. vaginalis prevalence and microbiota profiles did not differ at trial end-points. Iron-supplemented non-pregnant women received more antibiotic treatments for non-genital infections (P = 0.014; mainly gastrointestinal infections (P = 0.005), anti-fungal treatments for genital infections (P = 0.014) and analgesics (P = 0.008). Weekly iron did not significantly reduce iron deficiency prevalence. At baseline, iron-deficient women were more likely to have normal vaginal flora (P = 0.016). CONCLUSIONS: Periconceptional weekly iron supplementation of young women did not increase the risk of lower genital tract infections but did increase general morbidity in the non-pregnant cohort. Unabsorbed gut iron due to malaria could induce enteric infections, accounting for the increased administration of antibiotics and antifungals in the iron-supplemented arm. This finding reinforces concerns about routine iron supplementation in highly malarious areas

    Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet

    No full text
    Biofortification is a plant breeding method that introduces increased concentrations of minerals in staple food crops (e.g., legumes, cereal grains), and has shown success in alleviating insufficient Fe intake in various human populations. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification have not yet been reported, although the consumption of Fe biofortified staple food crops has increased significantly over time. Hence, in this study, we performed a 6-week feeding trial in Gallus gallus (n = 14), aimed to investigate the alterations in the gut microbiome following administration of an Fe biofortified bean-based diet (biofortified, BFe) versus a bean based diet with poorly-bioavailable Fe (standard, SFe). Cream seeded carioca bean based diets were designed in an identical fashion to those used in a recent human clinical trial of Fe biofortified beans in Rwanda. We hypothesized that the different dietary Fe contents in the beans based diets will alter the composition and function of the intestinal microbiome. The primary outcomes were changes in the gut microbiome composition and function analyzed by 16S rRNA gene sequencing. We observed no significant changes in phylogenetic diversity between groups. There were significant differences in the composition of the microbiota between groups, with the BFe group harboring fewer taxa participating in bacterial Fe uptake, increased abundance of bacteria involved in phenolic catabolism, and increased abundance of beneficial butyrate-producing bacteria. Additionally, depletion of key bacterial pathways responsible for bacterial viability and Fe uptake suggest that improvements in Fe bioavailability, in addition to increases in Fe-polyphenol and Fe-phytate complexes due to biofortification, led to decreased concentrations of cecal Fe available for bacterial utilization. Our findings demonstrate that Fe biofortification may improve Fe status without negatively altering the structure and function of the gut microbiota, as is observed with other nutritional methods of Fe supplementation. These results may be used to further improve the efficacy and safety of future biofortification efforts in eradicating global Fe deficiency
    corecore