79 research outputs found
Functional trait effects on ecosystem stability: assembling the jigsaw puzzle
Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.This study is the result of an international workshop financed by the Valencian government in Spain (Generalitat Valenciana, reference AORG/2018/) and was supported by Spanish Plan Nacional de I+D+i (project PGC2018-099027-B-I00). E.V. was supported by the 2017 program for attracting and retaining talent of Comunidad de Madrid (no. 2017-T2/ AMB-5406)
Enhancing cooperative responses by regional fisheries management organisations to climate-driven redistribution of tropical Pacific tuna stocks
Climate change is predicted to alter the distributions of tropical tuna stocks in the Pacific Ocean. Recent modelling projects significant future shifts in tuna biomass from west to east, and from national jurisdictions to high seas areas. As the distributions of these stocks change, the relevant regional fisheries management organisations (RFMOs)âthe Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC)âwill need to develop an expanded framework for cooperation and collaboration to fulfil their conservation and management responsibilities under international law. The key elements of a possible expanded framework for cooperation can be developed, and fundamental areas for collaboration identified, by applying and adapting principles established in the United Nations Convention on the Law of the Sea, the United Nations Fish Stocks Agreement, and the constituent instruments of the RFMOs themselves. Our analysis reveals a wide range of important issues requiring cooperation, and three clear priorities. First, a formal mechanism for cooperation is needed to enable effective and efficient decision-making and action by the two RFMOs on key issues. Second, further cooperation is required in scientific research and modelling to better understand the biology and distributions of Pacific tuna stocks and how they will respond to climate change, and to inform stock assessments and harvest strategies. Third, the RFMOs must cooperate to define appropriate limits on fishing for each stock in a way that ensures they are compatible across the two organisations, taking into account their different members and management regimes
Directional trends in species composition over time can lead to a widespread overemphasis of yearâtoâyear asynchrony
Questions: Compensatory dynamics are described as one of the main mechanisms that increase community stability, e.g., where decreases of some species on a yearâtoâyear basis are offset by an increase in others. Deviations from perfect synchrony between species (asynchrony) have therefore been advocated as an important mechanism underlying biodiversity effects on stability. However, it is unclear to what extent existing measures of synchrony actually capture the signal of yearâtoâyear species fluctuations in the presence of longâterm directional trends in both species abundance and composition (species directional trends hereafter). Such directional trends may lead to a misinterpretation of indices commonly used to reflect yearâtoâyear synchrony.
Methods: An approach based on threeâterm local quadrat variance (T3) which assesses population variability in a threeâyear moving window, was used to overcome species directional trend effects. This âdetrendingâ approach was applied to common indices of synchrony across a worldwide collection of 77 temporal plant community datasets comprising almost 7,800 individual plots sampled for at least six years. Plots included were either maintained under constant âcontrolâ conditions over time or were subjected to different management or disturbance treatments.
Results: Accounting for directional trends increased the detection of yearâtoâyear synchronous patterns in all synchrony indices considered. Specifically, synchrony values increased significantly in ~40% of the datasets with the T3 detrending approach while in ~10% synchrony decreased. For the 38 studies with both control and manipulated conditions, the increase in synchrony values was stronger for longer time series, particularly following experimental manipulation.
Conclusions: Speciesâ longâterm directional trends can affect synchrony and stability measures potentially masking the ecological mechanism causing yearâtoâyear fluctuations. As such, previous studies on community stability might have overemphasised the role of compensatory dynamics in realâworld ecosystems, and particularly in manipulative conditions, when not considering the possible overriding effects of longâterm directional trends
Three new brown dwarfs and a massive hot Jupiter revealed by TESS around early-type stars
Context. The detection and characterization of exoplanets and brown dwarfs around massive AF-type stars is essential to investigate and constrain the impact of stellar mass on planet properties. However, such targets are still poorly explored in radial velocity (RV) surveys because they only feature a small number of stellar lines and those are usually broadened and blended by stellar rotation as well as stellar jitter. As a result, the available information about the formation and evolution of planets and brown dwarfs around hot stars is limited.
Aims. We aim to increase the sample and precisely measure the masses and eccentricities of giant planets and brown dwarfs transiting early-type stars detected by the Transiting Exoplanet Survey Satellite (TESS).
Methods. We followed bright (V 6200 K that host giant companions (R > 7 Râ) using ground-based photometric observations as well as high precision radial velocity measurements from the CORALIE, CHIRON, TRES, FEROS, and MINERVA-Australis spectrographs.
Results. In the context of the search for exoplanets and brown dwarfs around early-type stars, we present the discovery of three brown dwarf companions, TOI-629b, TOI-1982b, and TOI-2543b, and one massive planet, TOI-1107b. From the joint analysis of TESS and ground-based photometry in combination with high precision radial velocity measurements, we find the brown dwarfs have masses between 66 and 68 MJup, periods between 7.54 and 17.17 days, and radii between 0.95 and 1.11 RJup. The hot Jupiter TOI-1107b has an orbital period of 4.08 days, a radius of 1.30 RJup, and a mass of 3.35 MJup. As a by-product of this program, we identified four low-mass eclipsing components (TOI-288b, TOI-446b, TOI-478b, and TOI-764b).
Conclusions. Both TOI-1107b and TOI-1982b present an anomalously inflated radius with respect to the age of these systems. TOI-629 is among the hottest stars with a known transiting brown dwarf. TOI-629b and TOI-1982b are among the most eccentric brown dwarfs. The massive planet and the three brown dwarfs add to the growing population of well-characterized giant planets and brown dwarfs transiting AF-type stars and they reduce the apparent paucity
LOTVS: a global collection of permanent vegetation plots
Analysing temporal patterns in plant communities is extremely important to quantify the extent and the consequences of ecological changes, especially considering the current biodiversity crisis. Long-term data collected through the regular sampling of permanent plots represent the most accurate resource to study ecological succession, analyse the stability of a community over time and understand the mechanisms driving vegetation change. We hereby present the LOng-Term Vegetation Sampling (LOTVS) initiative, a global collection of vegetation time-series derived from the regular monitoring of plant species in permanent plots. With 79 data sets from five continents and 7,789 vegetation time-series monitored for at least 6 years and mostly on an annual basis, LOTVS possibly represents the largest collection of temporally fine-grained vegetation time-series derived from permanent plots and made accessible to the research community. As such, it has an outstanding potential to support innovative research in the fields of vegetation science, plant ecology and temporal ecology
APPORT DE L'ANGIOSCANNER SPIRALE DANS L'EMBOLIE PULMONAIRE (UTILISATION D'UN NOUVEAU SCORE DE QUANTIFICATION DE L'OBSTRUCTION VASCULAIRE ; INTERET DANS LE SUIVI A UN MOIS)
LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Granite magma migration and emplacement along thrusts
International audienceThis paper investigates the influence exerted by brittle tectonic structures in the emplacement of granite plutons in contractional settings. We address both cases where contractional tectonics and magma intrusion are (1) coeval, to study how active contractional tectonics controls the transport of magma, and (2) diachronous, to study the role of pre-existing structures on the transport of magma. In light of new experimental models, we show that magma can rise along thrusts ramps and flats. This phenomenon occurs for both low-viscosity magma (basalts to andesite) and high-viscosity magma (dry granite). The experimental results also allow the evaluation of the role played by magma viscosity in determining pluton geometries. In addition, a review of literature demonstrates a spatial and causal relationship between granites and thrusts and highlights the geometric control of magma pathways in the pluton final shape. The abundance of subhorizontal and tabular granitic intrusions indicates that the location of inflating granitic sills along thrust flats can be common. We argue that active and pre-existing flats-and-ramps thrusts provide a preferential continuous planar anisotropy susceptible to become a granitic magma migration pathway
QTAIM Analysis in the Context of Quasirelativistic Quantum Calculations
International audienceComputational chemistry currently lacks ad hoc tools for probing the nature of chemical bonds in heavy and superheavy-atom systems where the consideration of spinorbit coupling (SOC) effects is mandatory. We report an implementation of the Quantum Theory of Atoms-In-Molecules in the framework of two-component relativistic calculations. Used in conjunction with the topological analysis of the Electron Localization Function, we show for astatine (At) species that SOC significantly lowers At electronegativity and boosts its propensity to make charge-shift bonds. Relativistic spin-dependent effects are furthermore able to change some bonds from mainly covalent to charge-shift type. The implication of the disclosed features regarding the rationalization of the labeling protocols used in nuclear medicine for At-211 radioisotope nicely illustrates the potential of the introduced methodology for investigating the chemistry of (super)heavy elements
Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution
International audienceA cost-effective computational methodology designed to study astatine (At) chemistry in aqueous solution has been established. It is based on two-component spin-orbit density functional theory calculations and solvation calculations using the conductor-like polarizable continuum model in conjunction with specific astatine cavities. Theoretical calculations are confronted with experimental data measured for complexation reactions between metallic forms of astatine (At + and AtO+) and inorganic ligands (Clâ , Brâ and SCNâ). For each reaction, both 1:1 and 1:2 complexes are evidenced. The experimental trends regarding the thermodynamic constants (K) can be reproduced qualitatively and quantitatively. The mean signed error on computed Log K values is -0.4, which corresponds to a mean signed error smaller than 1 kcal mol-1 on free energies of reaction. Theoretical investigations show that the reactivity of cationic species of astatine is highly sensitive to spin-orbit coupling and solvent effects. At the moment, the presented computational methodology appears to be the only tool to gain an insight into astatine chemistry at a molecular level
- âŠ