62 research outputs found
Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 Multiple Osteochondromas families
<p>Abstract</p> <p>Background</p> <p>Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in <it>EXT1 </it>or <it>EXT2</it>, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.</p> <p>Methods</p> <p>Here we report on the first molecular characterization of ten large <it>EXT1</it>- and <it>EXT2</it>-deletions in MO-patients. Deletions were initially indentified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.</p> <p>Results</p> <p>Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One <it>EXT2 </it>exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of <it>EXT1 </it>and <it>EXT2</it>. Non-allelic homologous recombination (NAHR) mediated by <it>Alu</it>-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.</p> <p>Conclusions</p> <p>Molecular characterization of <it>EXT1</it>- and <it>EXT2</it>-deletion breakpoints in MO-patients indicates that NAHR between <it>Alu-</it>sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in <it>EXT1 </it>and <it>EXT2</it>.</p
Policy challenges for the pediatric rheumatology workforce: Part I. Education and economics
For children with rheumatic conditions, the available pediatric rheumatology workforce mitigates their access to care. While the subspecialty experiences steady growth, a critical workforce shortage constrains access. This three-part review proposes both national and international interim policy solutions for the multiple causes of the existing unacceptable shortfall. Part I explores the impact of current educational deficits and economic obstacles which constrain appropriate access to care. Proposed policy solutions follow each identified barrier
Hereditary multiple exostoses and solitary osteochondroma associated with growth hormone deficiency: to treat or not to treat?
BACKGROUND: Osteochondroma generally occurs as a single lesion and it is not a heritable disease. When two or more osteochondroma are present, this condition represents a genetic disorder named hereditary multiple exostoses (HME). Growth hormone deficiency (GHD) has rarely been found in HME patients and a few data about growth therapy (GH) therapy effects in development/growth of solitary or multiple exostoses have been reported. CASE PRESENTATION: We describe the clinical features of 2 patients (one with osteochondroma and one with HME) evaluated before and after GH therapy. In the first patient, the single osteochondroma was noticed after the start of treatment; the other patient showed no evidence of significant increase in size or number of lesions related to GH therapy. CONCLUSION: It is necessary to investigate GH secretion in patients with osteochondroma or HME and short stature because they could benefit from GH replacement therapy. Moreover, careful clinical and imaging follow-up of exostoses is mandatory
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of oceanâatmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earthâs climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
- âŠ