3 research outputs found
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables