86 research outputs found

    Transcriptional impairment of β-catenin/E-cadherin complex is not associated with β-catenin mutations in colorectal carcinomas

    Get PDF
    We report the absence of β-catenin mutations in 63 sporadic colorectal carcinomas (SCRCs) with demonstrated decreased β-catenin and E-cadherin mRNA expression and E-cadherin protein expression in a subset of carcinomas examined, suggesting that β-catenin mutations are an extremely rare phenomenon in SCRCs and are not responsible for the transcriptional impairment of the β-catenin/E-cadherin adhesion complex observed in these tumours

    Clinical significance of the reduced expression of G protein gamma 7 (GNG7) in oesophageal cancer

    Get PDF
    We previously cloned human G protein gamma 7 (GNG7) and demonstrated that it was downregulated in gastrointestinal cancer. The significance of GNG7 expression in oesophageal cancer is unknown. TaqMan quantitative real-time PCR was performed to determine the clinical significance of GNG7 expression in 55 cases of oesophageal cancer. Furthermore, GNG7-transfected oesophageal cancer cells were analysed in laboratory studies at genomic and epigenetic levels. Twenty-seven patients with low GNG7 expression showed significantly poorer survival than did 28 patients with high expression (P<0.05). Tumours with low GNG7 expression invaded deeper than those with high GNG7 expression (P<0.05), both in vivo and in vitro. Eight tumours retained GNG7 expression, and they did not show either promoter hypermethylation or loss of heterozygosity (LOH). In 38 tumours with GNG7 suppression, 22 (57%) showed either LOH or promoter hypermethylation. In addition, GNG7 expression was significantly associated with the presence of miR328 in oesophageal cancer cell lines, which suggests that this microRNA might be a regulator of GNG7 expression. GNG7 suppression represents a new prognostic indicator in cases of oesophageal cancer. GNG7 might be suppressed by LOH and promoter hypermethylation or by microRNA

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Invasive behavior of ulcerative colitis-associated carcinoma is related to reduced expression of CD44 extracellular domain: comparison with sporadic colon carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To elucidate relations of invasion of ulcerative colitis (UC)-associated carcinoma with its prognosis, the characteristics of invasive fronts were analyzed in comparison with sporadic colonic carcinomas.</p> <p>Methods</p> <p>Prognoses of 15 cases of UC-associated colonic carcinoma were compared with those of sporadic colon carcinoma cases, after which 75 cases of sporadic invasive adenocarcinoma were collected. Tumor budding was examined histologically at invasive fronts using immunohistochemistry (IHC) of pancytokeratin. Expressions of beta-catenin with mutation analysis, CD44 extracellular domain, Zo-1, occludin, matrix matalloproteinase-7, laminin-5γ2, and sialyl Lewis X (Le<sup>X</sup>) were immunohistochemically evaluated.</p> <p>Results</p> <p>UC-associated carcinoma showed worse prognosis than sporadic colon carcinoma in all the cases, and exhibited a tendency to become more poorly differentiated when carcinoma invaded the submucosa or deeper layers than sporadic carcinoma. When the lesions were compared with sporadic carcinomas considering differentiation grade, reduced expression of CD44 extracellular domain in UC-associated carcinoma was apparent. Laminin-5γ2 and sialyl-Le<sup>X </sup>expression showed a lower tendency in UC-associated carcinomas than in their sporadic counterparts. There were no differences in the numbers of tumor budding foci between the two lesion types, with no apparent relation to nuclear beta-catenin levels in IHC.</p> <p>Conclusions</p> <p>UC-associated carcinoma showed poorer differentiation when the carcinoma invaded submucosa or deeper parts, which may influence the poorer prognosis. The invasive behavior of UC-associated carcinoma is more associated with CD44 cleavage than with basement membrane disruption or sialyl-Lewis-antigen alteration.</p

    Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients

    Get PDF
    Slug, a member of the Snail family of transcription factors, plays a crucial role in the regulation of epithelial-mesenchymal transition (EMT) by suppressing several epithelial markers and adhesion molecules including E-cadherin. Recently, several studies have reported Slug to be expressed in breast carcinoma, oesophageal carcinoma accompanied with shorter survival. In this study, we first investigated expression of Slug mRNA in five colorectal carcinoma cell lines by reverse transcription–polymerase chain reaction. Furthermore, we investigated Slug and E-cadherin expression by immunohistochemistry in 138 patients with colorectal carcinoma. Slug mRNA was clearly expressed in four out of five colorectal carcinoma cell lines. Positive expression of Slug and E-cadherin was observed in 37 and 58% of cases, respectively. The positive expression of Slug was significantly associated with Dukes stage and distant metastasis (P=0.0027 and 0.0007), and the positive expression of Slug had a significant impact on patient overall survival (P<0.0001, log-rank test). Moreover, patients with positive expression of Slug and reduced expression of E-cadherin showed the worst prognosis (P<0.0001, log-rank test). Multivariate analysis indicated that Slug expression was an independent prognostic factor. These results suggest that positive Slug expression in colorectal carcinoma patients may become a significant parameter of poor prognosis

    Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. <it>RAD52 </it>epistasis group genes involved in recombinational DNA repair, including <it>mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 </it>and <it>rad59 </it>genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in <it>Entamoeba histolytica </it>the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown.</p> <p>Results</p> <p>In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote <it>E. histolytica </it>using UV-C (150 J/m<sup>2</sup>) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In <it>E. histolytica </it>genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the <it>E. histolytica </it>RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear <it>foci</it>-like structures in <it>E. histolytica </it>trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and exchanging reactions between homologous strands <it>in vitro</it>.</p> <p>Conclusion</p> <p><it>E. histolytica </it>genome contains most of the RAD52 epistasis group related genes, which were differentially expressed when DNA double strand-breaks were induced by UV-C irradiation. In response to DNA damage, EhRAD51 protein is overexpressed and relocalized in nuclear <it>foci</it>-like structures. Functional assays confirmed that EhRAD51 is a <it>bonafide </it>recombinase. These data provided the first insights about the potential roles of the <it>E. histolytica </it>RAD52 epistasis group genes and EhRAD51 protein function in DNA damage response of this ancient eukaryotic parasite.</p

    The Role of p300 Histone Acetyltransferase in UV-Induced Histone Modifications and MMP-1 Gene Transcription

    Get PDF
    Matrix metalloproteinase (MMP)-1 promotes ultraviolet (UV)-triggered long-term detrimental effects such as cancer formation and premature skin aging. Although histone modifications may play a crucial role in the transcriptional regulation of MMP-1, the relationship between UV-induced histone modification and MMP-1 expression is not completely understood. Here, we identify regulators of histone acetylation that may link UV-mediated DNA damage and MMP-1 induction by UV in cultured human dermal fibroblasts (HDFs) in vitro. UV irradiation of HDFs induced MMP-1 expression and increased the level of phosphorylation of H2AX (γ-H2AX), p53 and the acetylation of histone H3 (acetyl-H3). Total histone deacetylase (HDAC) enzymatic activity was decreased by UV irradiation, while histone acetyltransferase (HAT) activity was increased. Suppression of p300 histone acetyltransferase (p300HAT) activity by the p300HAT inhibitor anacardic acid (AA) or by down-regulation of p300 by siRNA prevented UV-induced MMP-1 expression and inhibited UV-enhanced γ-H2AX, p53 level, and acetyl-H3. Using chromatin immunoprecipitation assays, we observed that γ-H2AX, p53, acetyl-H3, p300 and c-Jun were consistently recruited by UV to a distinct region (−2067/−1768) adjacent to the p300 binding site (−1858/−1845) in the MMP-1 promoter. In addition, these recruitments of γ-H2AX, p53, acetyl-H3, p300 and c-Jun to the p300-2 site were significantly abrogated by post-treatment with AA. Furthermore, overexpression of p300 increased the basal and UV-induced MMP-1 promoter activity. Our results suggest that p300HAT plays a critical role in the transcriptional regulation of MMP-1 by UV

    The context and potential of epigenetics in oncology

    Get PDF
    Cancer has long been known to be a disease caused by alterations in the genetic blueprint of cells. In the past decade it has become evident that epigenetic processes have a function, at least equally important, in neoplasia. Epigenetics describes the mechanisms that result in heritable alterations in gene expression profiles without an accompanying change in DNA sequence. Genetics and epigenetics intricately interact in the pathogenesis of cancer (Esteller, 2007). In this review, we paint a broad picture of current understanding of epigenetic changes in cancer cells and reflect on the immense clinical potential of emerging knowledge of epigenetics in the diagnosis, prognostic assessment, treatment, and screening of cancer

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual
    corecore