5,811 research outputs found

    Probing polymer chain constraint and synergistic effects in nylon 6-clay nanocomposites and nylon 6-silica flake sub-micro composites with nanomechanics

    Get PDF
    In this study, we report that a synergistic effect exists in the surface mechanical properties of nylon 6–clay nanocomposites (NC) that can be shown by nanomechanical testing. The hardness, elastic modulus, and nanoindentation creep behavior of nylon 6 and its nanocomposites with different filler loading produced by melt compounding were contrasted to those of model nylon 6 sub-microcomposites (SMC) reinforced by sub-micro-thick silica flakes in which constraint cannot occur due to the difference in filler geometry. Polymer chain constraint was assessed by the analysis of nanoindentation creep data. Time-dependent creep decreased with increasing the filler loading in the NC consistent with the clay platelets exerting a constraint effect on the polymer chains which increases with filler loading. In contrast, there was no evidence of any reduced time-dependent creep for the SMC samples, consistent with a lack of constraint expected due to much lower aspect ratio of the silica flake

    Termination of Cryogenian ironstone deposition by deep ocean euxinia

    Get PDF
    Widespread deposition of iron-rich sedimentary rocks (ironstones) occurred during the Sturtian ice age, the earlier of two Cryogenian ‘Snowball Earth’ glaciations. However, the reasons for the termination of Cryogenian Iron Formation (CIF) deposition remain poorly understood. Here we report a multi-isotope (Fe-C-S) study of the Xinyu CIF in South China that can directly address this question. The isotopic compositions of these multivalent elements exhibit remarkable covariance at the top of the Xinyu CIF that reflects progressive redox stratification during iron oxide deposition. Iron oxide deposition ended abruptly due to the titration of ferrous iron as pyrite following a large influx of riverine sulfate. Although termination of CIF deposition is commonly attributed to oxygenation, our data show that at least in some Cryogenian ocean basins, CIF deposition ended with the spread of euxinic rather than oxygenated waters

    Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation

    Full text link
    In this paper, we present the optimization formulation of the Kalman filtering and smoothing problems, and use this perspective to develop a variety of extensions and applications. We first formulate classic Kalman smoothing as a least squares problem, highlight special structure, and show that the classic filtering and smoothing algorithms are equivalent to a particular algorithm for solving this problem. Once this equivalence is established, we present extensions of Kalman smoothing to systems with nonlinear process and measurement models, systems with linear and nonlinear inequality constraints, systems with outliers in the measurements or sudden changes in the state, and systems where the sparsity of the state sequence must be accounted for. All extensions preserve the computational efficiency of the classic algorithms, and most of the extensions are illustrated with numerical examples, which are part of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure

    Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics

    Get PDF
    The simulation of low-temperature properties of many-body systems remains one of the major challenges in theoretical and experimental quantum information science. We present, and demonstrate experimentally, a universal cooling method which is applicable to any physical system that can be simulated by a quantum computer. This method allows us to distill and eliminate hot components of quantum states, i.e., a quantum Maxwell's demon. The experimental implementation is realized with a quantum-optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). These results open a new path for simulating low-temperature properties of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    In Situ Proteolysis to Generate Crystals for Structure Determination: An Update

    Get PDF
    For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13–15 crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of protease to crystallization trials—in situ proteolysis—significantly increased the number of proteins in a given set that produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate). Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded deposited crystal structures of 2.8 Å resolution or better, for an overall 12.6% success rate, and at least ten more yielded well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects

    ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks.</p> <p>Results</p> <p>Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded <it>cleavable </it>crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks.</p> <p>Conclusion</p> <p>The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: <url>http://www.creativemolecules.com/CM_Software.htm</url></p

    Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis: network meta-analysis

    Get PDF
    OBJECTIVE: To assess the effectiveness and safety of different preparations and doses of non-steroidal anti-inflammatory drugs (NSAIDs), opioids, and paracetamol for knee and hip osteoarthritis pain and physical function to enable effective and safe use of these drugs at their lowest possible dose. DESIGN: Systematic review and network meta-analysis of randomised trials. DATA SOURCES: Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, regulatory agency websites, and ClinicalTrials.gov from inception to 28 June 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised trials published in English with ≥100 patients per group that evaluated NSAIDs, opioids, or paracetamol (acetaminophen) to treat osteoarthritis. OUTCOMES AND MEASURES: The prespecified primary outcome was pain. Physical function and safety outcomes were also assessed. REVIEW METHODS: Two reviewers independently extracted outcomes data and evaluated the risk of bias of included trials. Bayesian random effects models were used for network meta-analysis of all analyses. Effect estimates are comparisons between active treatments and oral placebo. RESULTS: 192 trials comprising 102 829 participants examined 90 different active preparations or doses (68 for NSAIDs, 19 for opioids, and three for paracetamol). Five oral preparations (diclofenac 150 mg/day, etoricoxib 60 and 90 mg/day, and rofecoxib 25 and 50 mg/day) had ≥99% probability of more pronounced treatment effects than the minimal clinically relevant reduction in pain. Topical diclofenac (70-81 and 140-160 mg/day) had ≥92.3% probability, and all opioids had ≤53% probability of more pronounced treatment effects than the minimal clinically relevant reduction in pain. 18.5%, 0%, and 83.3% of the oral NSAIDs, topical NSAIDs, and opioids, respectively, had an increased risk of dropouts due to adverse events. 29.8%, 0%, and 89.5% of oral NSAIDs, topical NSAIDs, and opioids, respectively, had an increased risk of any adverse event. Oxymorphone 80 mg/day had the highest risk of dropouts due to adverse events (51%) and any adverse event (88%). CONCLUSIONS: Etoricoxib 60 mg/day and diclofenac 150 mg/day seem to be the most effective oral NSAIDs for pain and function in patients with osteoarthritis. However, these treatments are probably not appropriate for patients with comorbidities or for long term use because of the slight increase in the risk of adverse events. Additionally, an increased risk of dropping out due to adverse events was found for diclofenac 150 mg/day. Topical diclofenac 70-81 mg/day seems to be effective and generally safer because of reduced systemic exposure and lower dose, and should be considered as first line pharmacological treatment for knee osteoarthritis. The clinical benefit of opioid treatment, regardless of preparation or dose, does not outweigh the harm it might cause in patients with osteoarthritis. SYSTEMATIC REVIEW REGISTRATION: PROSPERO number CRD42020213656
    corecore