394 research outputs found

    Repurposing Face Masks after Use: From Wastes to Anode Materials for Na-Ion Batteries

    Get PDF
    Nowadays, face masks play an essential role in limiting coronavirus diffusion. However, their disposable nature represents a relevant environmental issue. In this work, we propose the utilization of two types of disposed (waste) face masks to prepare hard carbons (biochar) by pyrolytic conversion in mild conditions. Moreover, we evaluated the application of the produced hard carbons as anode materials in Na-ion batteries. Pristine face masks were firstly analyzed through infrared spectroscopy and thermogravimetric analysis. The pyrolysis of both mask types resulted in highly disordered carbons, as revealed by field-emission scanning electron microscopy and Raman spectroscopy, with a very low specific surface area. Anodes prepared with these carbons were tested in laboratory-scale Na-metal cells through electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic cycling, displaying an acceptable specific capacity along a wide range of current regimes, with a good coulombic efficiency (>98% over at least 750 cycles). As a proof of concept, the anodes were also used to assemble a Na-ion cell in combination with a Na3V2(PO4)(2)F-3 (NVPF) cathode and tested towards galvanostatic cycling, with an initial capacity of almost 120 mAhg(-1) (decreasing at about 47 mAhg(-1) after 50 cycles). Even though further optimization is required for a real application, the achieved electrochemical performances represent a preliminary confirmation of the possibility of repurposing disposable face masks into higher-value materials for Na-ion batteries

    Quantitative Metabolomics by 1H-NMR and LC-MS/MS Confirms Altered Metabolic Pathways in Diabetes

    Get PDF
    Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Impact of Carnivory on Human Development and Evolution Revealed by a New Unifying Model of Weaning in Mammals

    Get PDF
    Our large brain, long life span and high fertility are key elements of human evolutionary success and are often thought to have evolved in interplay with tool use, carnivory and hunting. However, the specific impact of carnivory on human evolution, life history and development remains controversial. Here we show in quantitative terms that dietary profile is a key factor influencing time to weaning across a wide taxonomic range of mammals, including humans. In a model encompassing a total of 67 species and genera from 12 mammalian orders, adult brain mass and two dichotomous variables reflecting species differences regarding limb biomechanics and dietary profile, accounted for 75.5%, 10.3% and 3.4% of variance in time to weaning, respectively, together capturing 89.2% of total variance. Crucially, carnivory predicted the time point of early weaning in humans with remarkable precision, yielding a prediction error of less than 5% with a sample of forty-six human natural fertility societies as reference. Hence, carnivory appears to provide both a necessary and sufficient explanation as to why humans wean so much earlier than the great apes. While early weaning is regarded as essentially differentiating the genus Homo from the great apes, its timing seems to be determined by the same limited set of factors in humans as in mammals in general, despite some 90 million years of evolution. Our analysis emphasizes the high degree of similarity of relative time scales in mammalian development and life history across 67 genera from 12 mammalian orders and shows that the impact of carnivory on time to weaning in humans is quantifiable, and critical. Since early weaning yields shorter interbirth intervals and higher rates of reproduction, with profound effects on population dynamics, our findings highlight the emergence of carnivory as a process fundamentally determining human evolution

    Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries

    Get PDF
    Aluminum-air batteries are promising candidates for next-generation high-energy-density storage, but the inherent limitations hinder their practical use. Here, we show that silver nanoparticle-mediated silver manganate nanoplates are a highly active and chemically stable catalyst for oxygen reduction in alkaline media. By means of atomic-resolved transmission electron microscopy, we find that the formation of stripe patterns on the surface of a silver manganate nanoplate originates from the zigzag atomic arrangement of silver and manganese, creating a high concentration of dislocations in the crystal lattice. This structure can provide high electrical conductivity with low electrode resistance and abundant active sites for ion adsorption. The catalyst exhibits outstanding performance in a flow-based aluminum-air battery, demonstrating high gravimetric and volumetric energy densities of similar to 2552 Wh kg(Al)(-1) and similar to 6890 Wh I-Al(-1) at 100 mA cm(-2), as well as high stability during a mechanical recharging process

    Estimates of adherence and error analysis of physical activity data collected via accelerometry in a large study of free-living adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activity monitors (AM) are small, electronic devices used to quantify the amount and intensity of physical activity (PA). Unfortunately, it has been demonstrated that data loss that occurs when AMs are not worn by subjects (removals during sleeping and waking hours) tend to result in biased estimates of PA and total energy expenditure (TEE). No study has reported the degree of data loss in a large study of adults, and/or the degree to which the estimates of PA and TEE are affected. Also, no study in adults has proposed a methodology to minimize the effects of AM removals.</p> <p>Methods</p> <p>Adherence estimates were generated from a pool of 524 women and men that wore AMs for 13 – 15 consecutive days. To simulate the effect of data loss due to AM removal, a reference dataset was first compiled from a subset consisting of 35 highly adherent subjects (24 HR; minimum of 20 hrs/day for seven consecutive days). AM removals were then simulated during sleep and between one and ten waking hours using this 24 HR dataset. Differences in the mean values for PA and TEE between the 24 HR reference dataset and the different simulations were compared using paired <it>t</it>-tests and/or coefficients of variation.</p> <p>Results</p> <p>The estimated average adherence of the pool of 524 subjects was 15.8 Β± 3.4 hrs/day for approximately 11.7 Β± 2.0 days. Simulated data loss due to AM removals during sleeping hours in the 24 HR database (n = 35), resulted in biased estimates of PA (p < 0.05), but not TEE. Losing as little as one hour of data from the 24 HR dataset during waking hours results in significant biases (p < 0.0001) and variability (coefficients of variation between 7 and 21%) in the estimates of PA. Inserting a constant value for sleep and imputing estimates for missing data during waking hours significantly improved the estimates of PA.</p> <p>Conclusion</p> <p>Although estimated adherence was good, measurements of PA can be improved by relatively simple imputation of missing AM data.</p

    Targeted p120-Catenin Ablation Disrupts Dental Enamel Development

    Get PDF
    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows

    Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy

    Get PDF
    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between minimal and maximal metabolic output

    The Molecular Evolution of the p120-Catenin Subfamily and Its Functional Associations

    Get PDF
    p120-catenin (p120) is the prototypical member of a subclass of armadillo-related proteins that includes Ξ΄-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1–3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor.To clarify functional relationships between these proteins and how they relate to the classical cadherins, we have examined the proteomes of 14 diverse vertebrate and metazoan species. The data reveal a single ancient Ξ΄-catenin-like p120 family member present in the earliest metazoans and conserved throughout metazoan evolution. This single p120 family protein is present in all protostomes, and in certain early-branching chordate lineages. Phylogenetic analyses suggest that gene duplication and functional diversification into β€œp120-like” and β€œΞ΄-catenin-like” proteins occurred in the urochordate-vertebrate ancestor. Additional gene duplications during early vertebrate evolution gave rise to the seven vertebrate p120 family members. Kaiso family members (i.e., Kaiso, ZBTB38 and ZBTB4) are found only in vertebrates, their origin following that of the p120-like gene lineage and coinciding with the evolution of vertebrate-specific mechanisms of epigenetic gene regulation by CpG island methylation.The p120 protein family evolved from a common Ξ΄-catenin-like ancestor present in all metazoans. Through several rounds of gene duplication and diversification, however, p120 evolved in vertebrates into an essential, ubiquitously expressed protein, whereas loss of the more selectively expressed Ξ΄-catenin, p0071 and ARVCF are tolerated in most species. Together with phylogenetic studies of the vertebrate cadherins, our data suggest that the p120-like and Ξ΄-catenin-like genes co-evolved separately with non-neural (E- and P-cadherin) and neural (N- and R-cadherin) cadherin lineages, respectively. The expansion of p120 relative to Ξ΄-catenin during vertebrate evolution may reflect the pivotal and largely disproportionate role of the non-neural cadherins with respect to evolution of the wide range of somatic morphology present in vertebrates today
    • …
    corecore