36 research outputs found

    CoBiToM project - I. Contact binaries towards merging

    Get PDF
    Binary and multiple stellar systems are numerous in our solar neighbourhood with 80per cent of the solar-type stars being members of systems with high order multiplicity. The Contact Binaries Towards Merging (CoBiToM) Project is a programme that focuses on contact binaries and multiple stellar systems, as a key for understanding stellar nature. The goal is to investigate stellar coalescence and merging processes, as the final state of stellar evolution of low-mass contact binary systems. Obtaining observational data of approximately 100 eclipsing binaries and multiple systems and more than 400 archival systems, the programme aspires to give insights for their physical and orbital parameters and their temporal variations, e.g. the orbital period modulation, spot activity etc. Gravitational phenomena in multiple-star environments will be linked with stellar evolution. A comprehensive analysis will be conducted, in order to investigate the possibility of contact binaries to host planets, as well as the link between inflated hot Jupiters and stellar mergers. The innovation of CoBiToM Project is based on a multimethod approach and a detailed investigation, that will shed light for the first time on the origin of stellar mergers and rapidly rotating stars. In this work, we describe the scientific rationale, the observing facilities to be used and the methods that will be followed to achieve the goals of CoBiToM Project and we present the first results as an example of the current research on evolution of contact binary systems

    Shear Strength Behavior of Different Geosynthetic Reinforced Soil Structure from Direct Shear Test

    No full text
    This paper presents the results of direct shear test on soil samples reinforced with geosynthetics, conducted with the aim of characterize the shear strength of reinforced soil composite. Two types of granular soil (well graded sand and silty sand) and four types of geosynthetic (woven and nonwoven geotextile—uniaxial and biaxial geogrid) were selected. Laboratory testing program were performed in two shear boxes, circular box with 63 mm in diameter and square box with 100 mm in length; the samples were made with loose and dense sand; the reinforcement layer was placed perpendicular to the failure surface; tests are conducted with three vertical confining pressures: 15.7, 31.4 and 62.8 kPa. The effect of different factors that influence the results of the shear tests is analyzed, such as: the particle size of soils, density of soils, shear box size and type of geosynthetics. The test results reveal that the maximum value of shear strength improvement was achieved for dense silty sand samples reinforced with biaxial geogrid. In general, the improvement was more favorable for samples reinforced with geogrid compared to samples reinforced with geotextile.Fil: Useche Infante, Danny Jose. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Aiassa Martinez, Gonzalo Martin. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; ArgentinaFil: Arrua, Pedro Ariel. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; ArgentinaFil: Eberhardt, Marcelo Gabriel. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentin
    corecore