396 research outputs found

    Reconstructing Seesaws

    Full text link
    We explore some aspects of "reconstructing" the heavy singlet sector of supersymmetric type I seesaw models, for two, three or four singlets. We work in the limit where one light neutrino is massless. In an ideal world, where selected coefficients of the TeV-scale effective Lagrangian could be measured with arbitrary accuracy, the two-singlet case can be reconstructed, two three or more singlets can be differentiated, and an inverse seesaw with four singlets can be reconstructed. In a more realistic world, we estimate \ell_\a \to \ell_\b \gamma expectations with a "Minimal-Flavour-Violation-like" ansatz, which gives a relation between ratios of the three branching ratios. The two singlet model predicts a discrete set of ratios.Comment: 14 page

    Radiative Corrections to Fixed Target Moller Scattering Including Hard Bremsstrahlung Effects

    Get PDF
    We present a calculation of the complete O(α)O(\alpha) electroweak radiative corrections to the Moller scattering process e^-e^- -> e^-e^-, including hard bremsstrahlung contributions. We study the effects of these corrections on both the total cross section and polarization asymmetry measured in low energy fixed target experiments. Numerical results are presented for the experimental cuts relevant for E-158, a fixed target e^-e^- experiment being performed at SLAC; the effect of hard bremsstrahlung is to shift the measured polarization asymmetry by approximately +4%. We briefly discuss the remaining theoretical uncertainty in the prediction for the low energy Moller scattering polarization asymmetry.Comment: 22 pgs; minor clarifications added and typos fixe

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    Dark Matter, Light Stops and Electroweak Baryogenesis

    Full text link
    We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.

    The Weak Charge of the Proton and New Physics

    Get PDF
    We address the physics implications of a precision determination of the weak charge of the proton, QWP, from a parity violating elastic electron proton scattering experiment to be performed at the Jefferson Laboratory. We present the Standard Model (SM) expression for QWP including one-loop radiative corrections, and discuss in detail the theoretical uncertainties and missing higher order QCD corrections. Owing to a fortuitous cancellation, the value of QWP is suppressed in the SM, making it a unique place to look for physics beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and leptoquarks. We argue that a QWP measurement will provide an important complement to both high energy collider experiments and other low energy electroweak measurements. The anticipated experimental precision requires the knowledge of the order alpha_s corrections to the pure electroweak box contributions. We compute these contributions for QWP, as well as for the weak charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe
    • 

    corecore