183 research outputs found

    Semiconductor device for generating an oscillating voltage

    Get PDF
    A semiconductor device which displays an oscillating voltage due to the creation of charge domains which includes a plurality of semiconductor layers and at least two electrodes spaced from one another in the direction of the layers, an upper of which has a composition and/or dimensions predetermined so that a charge therein balances a depletion from a surface charge of the upper layer on application of a potential difference across said electrodes. The electrodes may be in contact solely with the upper layer. A method of manufacturing the device is also provided

    A planar Gunn diode operating above 100 GHz

    Get PDF
    We show the experimental realization of a 108-GHz planar Gunn diode structure fabricated in GaAs/AlGaAs. There is a considerable interest in such devices since they lend themselves to integration into millimeter-wave and terahertz integrated circuits. The material used was grown by molecular beam epitaxy, and devices were made using electron beam lithography. Since the frequency of oscillation is defined by the lithographically controlled anode-cathode distance, the technology shows great promise in fabricating single chip terahertz sources

    Exploratory Behavior, Trap Models and Glass Transitions

    Get PDF
    A random walk is performed on a disordered landscape composed of NN sites randomly and uniformly distributed inside a dd-dimensional hypercube. The walker hops from one site to another with probability proportional to exp[βE(D)]\exp [- \beta E(D)], where β=1/T\beta = 1/T is the inverse of a formal temperature and E(D)E(D) is an arbitrary cost function which depends on the hop distance DD. Analytic results indicate that, if E(D)=DdE(D) = D^{d} and NN \to \infty, there exists a glass transition at βd=πd/2/Γ(d/2+1)\beta_d = \pi^{d/2}/\Gamma(d/2 + 1). Below TdT_d, the average trapping time diverges and the system falls into an out-of-equilibrium regime with aging phenomena. A L\'evy flight scenario and applications to exploratory behavior are considered.Comment: 4 pages, 1 figure, new versio

    The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes

    Full text link
    This work considers the way that quantum loop effects modify the propagation of light in curved space. The calculation of the refractive index for scalar QED is reviewed and then extended for the first time to QED with spinor particles in the loop. It is shown how, in both cases, the low frequency phase velocity can be greater than c, as found originally by Drummond and Hathrell, but causality is respected in the sense that retarded Green functions vanish outside the lightcone. A "phenomenology" of the refractive index is then presented for black holes, FRW universes and gravitational waves. In some cases, some of the polarization states propagate with a refractive index having a negative imaginary part indicating a potential breakdown of the optical theorem in curved space and possible instabilities.Comment: 62 pages, 14 figures, some signs corrected in formulae and graph

    Topological representations of matroid maps

    Full text link
    The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid can be realized as the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engstr\"om to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that the process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic Combinatorics, 201

    A Generating Function for all Semi-Magic Squares and the Volume of the Birkhoff Polytope

    Get PDF
    We present a multivariate generating function for all n x n nonnegative integral matrices with all row and column sums equal to a positive integer t, the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope B_n of n x n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for the volumes of B_n and any of its faces.Comment: 24 pages, 1 figure. To appear in Journal of Algebraic Combinatoric

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    Escaping from cycles through a glass transition

    Get PDF
    A random walk is performed over a disordered media composed of NN sites random and uniformly distributed inside a dd-dimensional hypercube. The walker cannot remain in the same site and hops to one of its nn neighboring sites with a transition probability that depends on the distance DD between sites according to a cost function E(D)E(D). The stochasticity level is parametrized by a formal temperature TT. In the case T=0T = 0, the walk is deterministic and ergodicity is broken: the phase space is divided in a O(N){\cal O}(N) number of attractor basins of two-cycles that trap the walker. For d=1d = 1, analytic results indicate the existence of a glass transition at T1=1/2T_1 = 1/2 as NN \to \infty. Below T1T_1, the average trapping time in two-cycles diverges and out-of-equilibrium behavior appears. Similar glass transitions occur in higher dimensions choosing a proper cost function. We also present some results for the statistics of distances for Poisson spatial point processes.Comment: 11 pages, 4 figure

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Water-like anomalies for core-softened models of fluids: One dimension

    Full text link
    We use a one-dimensional (1d) core-softened potential to develop a physical picture for some of the anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The interest in the 1d system stems from the facts that closed-form results are possible and that the qualitative behavior in 1d is reproduced in the liquid phase for higher dimensions. We discuss the relation between the shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density anomaly. We find that certain forms of the two-step square well potential lead to the existence at T=0 of a low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the appearance of a point CC' at a positive pressure, which is the analog of the T=0 ``critical point'' in the 1d1d Ising model. The existence of point CC' leads to anomalous behavior of the isothermal compressibility KTK_T and the isobaric specific heat CPC_P.Comment: 22 pages, 7 figure
    corecore