9 research outputs found

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Entanglement in SU(2)-invariant quantum spin systems

    Get PDF
    We analyze the entanglement of SU(2)-invariant density matrices of two spins S1\vec S_{1}, S2\vec S_{2} using the Peres-Horodecki criterion. Such density matrices arise from thermal equilibrium states of isotropic spin systems. The partial transpose of such a state has the same multiplet structure and degeneracies as the original matrix with eigenvalue of largest multiplicity being non-negative. The case S1=SS_{1}=S, S2=1/2S_{2}=1/2 can be solved completely and is discussed in detail with respect to isotropic Heisenberg spin models. Moreover, in this case the Peres-Horodecki ciriterion turns out to be a sufficient condition for non-separability. We also characterize SU(2)-invariant states of two spins of length 1.Comment: 5 page

    Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence

    Full text link
    In this paper we discuss various correlations measured by the concurrence (C), classical correlation (CC), quantum discord (QD), and geometric measure of discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction. Based on the analytically derived expressions for the correlations for the cases of thermal equilibrium and the inclusion of intrinsic decoherence, we discuss and compare the effects of various system parameters on the correlations in different cases. The results show that the anisotropy Jz is considerably crucial for the correlations in thermal equilibrium at zero temperature limit but ineffective under the consideration of the intrinsic decoherence, and these quantities decrease as temperature T rises on the whole. Besides, J turned out to be constructive, but B be detrimental in the manipulation and control of various quantities both in thermal equilibrium and under the intrinsic decoherence which can be avoided by tuning other system parameters, while D is constructive in thermal equilibrium, but destructive in the case of intrinsic decoherence in general. In addition, for the initial state Ψ1(0)>=12(01>+10>)|\Psi_1(0) > = \frac{1}{\sqrt{2}} (|01 > + |10 >), all the correlations except the CC, exhibit a damping oscillation to a stable value larger than zero following the time, while for the initial state Ψ2(0)>=12(00>+11>)|\Psi_2(0) > = \frac{1}{\sqrt{2}} (|00 > + |11 >), all the correlations monotonously decrease, but CC still remains maximum. Moreover, there is not a definite ordering of these quantities in thermal equilibrium, whereas there is a descending order of the CC, C, GMD and QD under the intrinsic decoherence with a nonnull B when the initial state is Ψ2(0)>|\Psi_2(0) >.Comment: 8 pages, 7 figure

    Thermal entanglement in the anisotropic Heisenberg model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field

    No full text
    The thermal entanglement of a two-qubit anisotropic Heisenberg XXZ chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field was studied in detail. The effects of the DM parameter, external magnetic field (B), a parameter b which controls the inhomogeneity of B and the bilinear interaction parameters J(x) = J(y) not equal J(z) (the anisotropic case) on the concurrence (C) was formulated and studied in detail. The behaviors of the concurrences for the cases between (J = J(z) = 1) and (J = -1,J(z) = 1) and, (J = J(z) = -1) and (J = 1,J(z) = -1) at the ground state and at the thermal equilibrium are exactly the same. It was found that for the antiferromagnetic (AFM) case the entanglements persist to higher temperatures in comparison with the ferromagnetic (FM) case. In addition, the AFM case presents a special point at which the nonzero concurrences are all equal at some special temperatures. The further properties will be given in the text
    corecore