61 research outputs found

    Separably injective C*-algebras

    Get PDF
    We show that a C*-algebra is a 11-separably injective Banach space if, and only if, it is linearly isometric to the Banach space C0(Ω)C_0(\Omega) of complex continuous functions vanishing at infinity on a substonean locally compact Hausdorff space Ω\Omega

    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    Prenatal Treatment of X-Linked Hypohidrotic Ectodermal Dysplasia using Recombinant Ectodysplasin in a Canine Model.

    No full text
    X-linked hypohidrotic ectodermal dysplasia (XLHED) is caused by defects in the EDA gene that inactivate the function of ectodysplasin A1 (EDA1). This leads to abnormal development of eccrine glands, hair follicles, and teeth, and to frequent respiratory infections. Previous studies in the naturally occurring dog model demonstrated partial prevention of the XLHED phenotype by postnatal administration of recombinant EDA1. The results suggested that a single or two temporally spaced injections of EDI200 prenatally might improve the clinical outcome in the dog model. Fetuses received ultrasound-guided EDI200 intra-amniotically at gestational days 32 and 45, or 45 or 55 alone (of a 65-day pregnancy). Growth rates, lacrimation, hair growth, meibomian glands, sweating, dentition, and mucociliary clearance were compared in treated and untreated XLHED-affected dogs, and in heterozygous and wild-type control dogs. Improved phenotypic outcomes were noted in the earlier and more frequently treated animals. All animals treated prenatally showed positive responses compared with untreated dogs with XLHED, most notably in the transfer of moisture through paw pads, suggesting improved onset of sweating ability and restored meibomian gland development. These results exemplify the feasibility of ultrasound-guided intra-amniotic injections for the treatment of developmental disorders, with improved formation of specific EDA1-dependent structures in dogs with XLHED
    corecore