912 research outputs found
Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests?
Summary Tropical forests are critical for protecting global biodiversity and carbon stores. While forest degradation and fragmentation cause negative impacts on trees, many woody lianas benefit, with associated negative effects on carbon storage. Here, we focus on the key question of how abiotic environmental changes resulting from tropical forest fragmentation mediate the allocation of carbon into trees and lianas. We focus on the globally threatened Brazilian Atlantic Forest, in forest fragments spanning 13–23 442 ha in area and at fragment edges and interiors. Within each fragment, we established two transects: one at the edge and one in the interior. Each transect consisted of ten 10 × 10 m plots spaced at 20 m intervals. Within each plot, we sampled living trees with diameter ≥4·8 cm at 1·3 m above ground, living lianas with diameter ≥1·6 cm at 10 cm above ground, and several microclimatic and soil variables. Fragmentation changed a broad suite of abiotic environmental conditions recognized as being associated with forest carbon stocks: edges and smaller fragments were hotter, windier, and less humid, with more fertile and less acid soils at edges. Tree carbon stocks were thus higher in forest interiors than at edges, and were positively related to fragment size in interiors, but were not impacted by fragment size at edges. Trees and lianas showed different responses to fragmentation: in interiors of small fragments, tree carbon stocks declined whereas liana carbon stocks increased; and at edges, tree carbon stocks were not affected by fragment size, whereas liana carbon stocks were highest in smaller fragments. These patterns were strongly related to changes in abiotic environmental conditions. We conclude that the abiotic changes across the fragmentation gradient, rather than liana proliferation, were more likely to reduce tree carbon stocks. Cutting of lianas is frequently promoted for restoring forest carbon in human-modified tropical forests. However, this approach may not be effective for restoring forest carbon stocks in fragmented forests
Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons
The Effective Field Theory "without pions" at next-to-leading order is used
to analyze universal bound state and scattering properties of the 3- and
4-nucleon system. Results of a variety of phase shift equivalent nuclear
potentials are presented for bound state properties of 3H and 4He, and for the
singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are
performed with the Refined Resonating Group Method and include a full treatment
of the Coulomb interaction and the leading-order 3-nucleon interaction. The
results compare favorably with data and values from AV18(+UIX) model
calculations. A new correlation between a_0(3He-n) and the 3H binding energy is
found. Furthermore, we confirm at next-to-leading order the correlations,
already found at leading-order, between the 3H binding energy and the 3H charge
radius, and the Tjon line. With the 3H binding energy as input, we get
predictions of the Effective Field Theory "without pions" at next-to-leading
order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the
4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm
0.6)fm. Including the Coulomb interaction, the splitting in binding energy
between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data
of (0.10\mp 0.03) MeV is model independently attributed to higher order charge
independence breaking interactions. We also demonstrate that different results
for the same observable stem from higher order effects, and carefully assess
that numerical uncertainties are negligible. Our results demonstrate the
convergence and usefulness of the pion-less theory at next-to-leading order in
the 4He channel. We conclude that no 4-nucleon interaction is needed to
renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with
includegraphicx, leading-order results added, calculations include the LO
three-nucleon interaction explicitly, comment on Wigner bound added, minor
modification
Existence of superposition solutions for pulse propagation in nonlinear resonant media
Existence of self-similar, superposed pulse-train solutions of the nonlinear,
coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the
oscillator strengths of the transitions, is established. Some of these
excitations are specific to the resonant media, with energy levels in the
configurations of and and arise because of the interference
effects of cnoidal waves, as evidenced from some recently discovered identities
involving the Jacobian elliptic functions. Interestingly, these excitations
also admit a dual interpretation as single pulse-trains, with widely different
amplitudes, which can lead to substantially different field intensities and
population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde
The ASCE neutron probe calibration study: overview
A workshop was held at Logan, Utah to gather field information on
neutron probe calibration and operation. Several techniques and instruments
were compared. This paper serves to establish the background information for
the work and describe the overall approaches, conditions, and equipment. Other
papers presented at this conference provide detailed procedures and results
Sensitivity and Estimation of Flying-Wing Aerodynamic, Propulsion, and Inertial Parameters Using Simulation
This paper explores the difficulties of aircraft system identification, specifically parameter estimation, for a rudderless aircraft. A white box method is used in conjunction with a nonlinear six degree-of-freedom aerodynamic model for the equations of motion in order to estimate 33 parameters that govern the aerodynamic, inertial, and propulsion forces within the mathematical model. The analysis is conducted in the time-domain of system identification. Additionally, all the parameters are estimated using a single flight rather than a series of shorter flights dedicated to estimating specific sets of parameters as is typically done. A final flight plan is developed with a mixture of lateral maneuvers interspersed throughout the flight to accentuate the significance of the lateral parameters during estimation. Certain parameters were ill-conditioned for parameter estimation using the mathematical model and final flight plan derived in this paper. The gradient-based optimization technique used in the estimation algorithm struggled to accurately estimate all 33 in a single flight due to the abundance of local minima within the solution space. The results of this work may provide a few insights for parameter estimation. First, to understand why system identification is performed the way it is currently done through multiple different flight maneuvers. Second, to gain some visual insight to the behavior of the nonlinear six degree-of-freedom aerodynamic model that describes the motion of fixed wing aircraft. This work may also be helpful in determining which parameters might likely be estimated together and which may struggle due to coupled dynamic relations within the mathematical model
A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block
A protocol for quantum secure direct communication using blocks of EPR pairs
is proposed. A set of ordered EPR pairs is used as a data block for sending
secret message directly. The ordered EPR set is divided into two particle
sequences, a checking sequence and a message-coding sequence. After
transmitting the checking sequence, the two parties of communication check
eavesdropping by measuring a fraction of particles randomly chosen, with random
choice of two sets of measuring bases. After insuring the security of the
quantum channel, the sender, Alice encodes the secret message directly on the
message-coding sequence and send them to Bob. By combining the checking and
message-coding sequences together, Bob is able to read out the encoded messages
directly. The scheme is secure because an eavesdropper cannot get both
sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
The HO Southern Galactic Plane Survey (HOPS) - I. Techniques and HO maser data
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present first results of the HO Southern Galactic Plane Survey (HOPS), using the Mopra Radio Telescope with a broad-band backend and a beam size of about 2 arcmin. We have observed 100 deg of the southern Galactic plane at 12mm (19.5-27.5GHz), including spectral line emission from HO masers, multiple metastable transitions of ammonia, cyanoacetylene, methanol and radio recombination lines. In this paper, we report on the characteristics of the survey and HO maser emission. We find 540 HO masers, of which 334 are new detections. The strongest maser is 3933Jy and the weakest is 0.7Jy, with 62 masers over 100Jy. In 14 maser sites, the spread in the velocity of the HO maser emission exceeds 100kms. In one region, the HO maser velocities are separated by 351.3kms. The rms noise levels are typically between 1 and 2Jy, with 95 per cent of the survey under 2Jy. We estimate completeness limits of 98 per cent at around 8.4Jy and 50 per cent at around 5.5Jy. We estimate that there are between 800 and 1500 HO masers in the Galaxy that are detectable in a survey with similar completeness limits to HOPS. We report possible masers in NH (11,9) and (8,6) emission towards G19.61-0.23 and in the NH (3,3) line towards G23.33-0.30.Peer reviewe
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for
the origin and observability of the warm hot intergalactic medium (WHIM), the
diffuse gas that contains up to 50 per cent of the baryons at z~0. During
structure formation, gravitational accretion shocks emerging from collapsing
regions gradually heat the intergalactic medium (IGM) to temperatures in the
range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the
ultraviolet (UV) and X-ray bands and to contribute a significant fraction of
the soft X-ray background emission. While O VI and C IV absorption systems
arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in
FUSE and HST observations, models agree that current X-ray telescopes such as
Chandra and XMM-Newton do not have enough sensitivity to detect the hotter
WHIM. However, future missions such as Constellation-X and XEUS might be able
to detect both emission lines and absorption systems from highly ionised atoms
such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 14; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …