512 research outputs found

    An updated analysis of NN elastic scattering data to 1.6 GeV

    Full text link
    An energy-dependent and set of single-energy partial-wave analyses of NNNN elastic scattering data have been completed. The fit to 1.6~GeV has been supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit, we study the sensitivity of our analysis to the choice of πNN\pi NN coupling constant. We also comment on the possibility of fitting npnp data alone. These results are compared with those found in the recent Nijmegen analyses. (Figures may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/

    First-principles study of the structural energetics of PdTi and PtTi

    Full text link
    The structural energetics of PdTi and PtTi have been studied using first-principles density-functional theory with pseudopotentials and a plane-wave basis. We predict that in both materials, the experimentally reported orthorhombic B19B19 phase will undergo a low-temperature phase transition to a monoclinic B19â€ČB19' ground state. Within a soft-mode framework, we relate the B19B19 structure to the cubic B2B2 structure, observed at high temperature, and the B19â€ČB19' structure to B19B19 via phonon modes strongly coupled to strain. In contrast to NiTi, the B19B19 structure is extremely close to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely transition mechanisms in the present case.Comment: 8 pages 5 figure

    Imaging gas-exchange lung function and brain tissue uptake of hyperpolarized 129Xe using sampling density-weighted MRSI

    Get PDF
    PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information

    Reversal of graft-versus-host disease with infusion of autologous bone marrow

    Get PDF
    Graft-versus-host disease (GVHD) remains a major complication of bone marrow transplantation. This report describes reversal of GVHD by infusion of stored recipient bone marrow following combined liver-bone marrow allotransplantation. Graft-versus-host disease developed at the end of the first postoperative week. The skin involvement progressively spread to approximately 80% of the body surface and was not affected by modification of the immunosuppressive treatment. On the 42nd and 43rd postoperative day 1.23 × 108 and 1.6 × 108 autologous bone marrow cells per kg of recipient body weight were infused. The skin rush began to dramatically improve and resolved within 2 wk from the autologous marrow infusion. Autologous bone marrow storage previous to allogeneic bone marrow transplantation for tolerance induction could constitute a safety net in case of occurrence of GVHD. © 1994

    Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands

    Get PDF
    We analyzed the relationship between new ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density of PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data set for all peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = PPFD P max (PPFD + PMAX) + R) better described the NEE-PPFD relationships ,while bogs had lower respiration rates (R = -2.0 umol m-2 s-1 for bogs and -2.7 umol m-2 s-1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 umol m-2 s-1) than the upland exosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5-50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils

    You are in sync with me:neural correlates of interpersonal synchrony with a partner

    Get PDF
    Interpersonal synchrony is characterized by a temporary alignment of periodic behaviors with another person. This process requires that at least one of the two individuals monitors and adjusts his/her movements to maintain alignment with the other individual (the referent). Interestingly, recent research on interpersonal synchrony has found that people who are motivated to befriend an unfamiliar social referent tend to automatically synchronize with their social referents, raising the possibility that synchrony may be employed as an affiliation tool. It is unknown, however, whether the opposite is true; that is, whether the person serving as the referent of interpersonal synchrony perceives synchrony with his/her partner or experiences affiliative feelings toward the partner.To address this question, we performed a series of studies on interpersonal synchrony with a total of 100 participants. In all studies, participants served as the referent with no requirement to monitor or align their behavior with their partners. Unbeknown to the participants, the timings of their “partner’s” movements were actually determined by a computer program based on the participant’s (i.e., referent’s) behavior.Overall, our behavioral results showed that the referent of a synchrony task expressed greater perceived synchrony and greater social affiliation toward a synchronous partner (i.e., one displaying low mean asynchrony and/or a narrow asynchrony range) than with an asynchronous partner (i.e., one displaying high mean asynchrony and/or high asynchrony range). Our neuroimaging study extended these results by demonstrating involvement of brain areas implicated in social cognition, embodied cognition, self-other expansion, and action observation as correlates of interpersonal synchrony (vs. asynchrony). These findings have practical implications for social interaction and theoretical implications for understanding interpersonal synchrony and social coordination

    Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells

    Get PDF
    The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes

    The Verifying Compiler: A Grand Challenge for Computing Research

    Get PDF
    Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, it revives an old challenge: the construction and application of a verifying compiler that guarantees correctness of a program before running it. Introduction. The primary purpose of the formulation and promulgation of a grand challenge is the advancement of science or engineering. A grand challenge represents a commitment by a significant section of the research community to work together towards a common goal, agreed to be valuable and achievable by a team effort within a predicted timescale. The challenge is formulated by th

    Synthesis from Recursive-Components Libraries

    Full text link
    Synthesis is the automatic construction of a system from its specification. In classical synthesis algorithms it is always assumed that the system is "constructed from scratch" rather than composed from reusable components. This, of course, rarely happens in real life. In real life, almost every non-trivial commercial software system relies heavily on using libraries of reusable components. Furthermore, other contexts, such as web-service orchestration, can be modeled as synthesis of a system from a library of components. In 2009 we introduced LTL synthesis from libraries of reusable components. Here, we extend the work and study synthesis from component libraries with "call and return"' control flow structure. Such control-flow structure is very common in software systems. We define the problem of Nested-Words Temporal Logic (NWTL) synthesis from recursive component libraries, where NWTL is a specification formalism, richer than LTL, that is suitable for "call and return" computations. We solve the problem, providing a synthesis algorithm, and show the problem is 2EXPTIME-complete, as standard synthesis.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    • 

    corecore