1,139 research outputs found
An efficient asymptotic extraction approach for the green's functions of conformal antennas in multilayered cylindrical media
Asymptotic expressions are derived for the dyadic Green's functions of antennas radiating in the presence of a multilayered cylinder, where analytic representation of the asymptotic expansion coefficients eliminates the computational cost of numerical evaluation. As a result, the asymptotic extraction technique has been applied only once for a large summation order . In addition, the Hankel function singularity encountered for source and evaluation points at the same radius has been eliminated using analytical integration
Approach to equilibrium for a class of random quantum models of infinite range
We consider random generalizations of a quantum model of infinite range
introduced by Emch and Radin. The generalization allows a neat extension from
the class of absolutely summable lattice potentials to the optimal class
of square summable potentials first considered by Khanin and Sinai and
generalised by van Enter and van Hemmen. The approach to equilibrium in the
case of a Gaussian distribution is proved to be faster than for a Bernoulli
distribution for both short-range and long-range lattice potentials. While
exponential decay to equilibrium is excluded in the nonrandom case, it is
proved to occur for both short and long range potentials for Gaussian
distributions, and for potentials of class in the Bernoulli case. Open
problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys.,
corrects some minor errors and includes additional references and comments on
the relation to experiment
Segregated tunneling-percolation model for transport nonuniversality
We propose a theory of the origin of transport nonuniversality in disordered
insulating-conducting compounds based on the interplay between microstructure
and tunneling processes between metallic grains dispersed in the insulating
host. We show that if the metallic phase is arranged in quasi-one dimensional
chains of conducting grains, then the distribution function of the chain
conductivities g has a power-law divergence for g -> 0 leading to nonuniversal
values of the transport critical exponent t. We evaluate the critical exponent
t by Monte Carlo calculations on a cubic lattice and show that our model can
describe universal as well nonuniversal behavior of transport depending on the
value of few microstructural parameters. Such segregated tunneling-percolation
model can describe the microstructure of a quite vast class of materials known
as thick-film resistors which display universal or nonuniversal values of t
depending on the composition.Comment: 8 pages, 5 figures (Phys. Rev. B - 1 August 2003)(fig1 replaced
Dynamical restriction for a growing neck due to mass parameters in a dinuclear system
Mass parameters for collective variables of a dinuclear system and strongly
deformed mononucleus are microscopically formulated with the linear response
theory making use of the width of single particle states and the
fluctuation-dissipation theorem. For the relative motion of the nuclei and for
the degree of freedom describing the neck between the nuclei, we calculate mass
parameters with basis states of the adiabatic and diabatic two-center shell
model. Microscopical mass parameters are found larger than the ones obtained
with the hydrodynamical model and give a strong hindrance for a melting of the
dinuclear system along the internuclear distance into a compound system.
Therefore, the dinuclear system lives a long time enough comparable to the
reaction time for fusion by nucleon transfer. Consequences of this effect for
the complete fusion process are discussed.Comment: 22 pages, 7 figures, submitted to Nucl.Phys.
The structure of superheavy elements newly discovered in the reaction of Kr with Pb
The structure of superheavy elements newly discovered in the
Pb(Kr,n) reaction at Berkeley is systematically studied in the
Relativistic Mean Field (RMF) approach. It is shown that various usually
employed RMF forces, which give fair description of normal stable nuclei, give
quite different predictions for superheavy elements. Among the effective forces
we tested, TM1 is found to be the good candidate to describe superheavy
elements. The binding energies of the 118 nucleus and its
decay daughter nuclei obtained using TM1 agree with those of FRDM
within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn
from the calculated binding energies for Pb isotopes with the Relativistic
Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained
from RCHB, RMF calculations with pairing and deformation are carried out for
the structure of superheavy elements. The binding energy, shape, single
particle levels, and the Q values of the decay are
discussed, and it is shown that both pairing correlation and deformation are
essential to properly understand the structure of superheavy elements. A good
agreement is obtained with experimental data on . %Especially, the
atomic number %dependence of %seems to match with the experimental
observationComment: 19 pages, 5 figure
Non-equilibrium Gross-Pitaevskii dynamics of boson lattice models
Motivated by recent experiments on trapped ultra-cold bosonic atoms in an
optical lattice potential, we consider the non-equilibrium dynamic properties
of such bosonic systems for a number of experimentally relevant situations.
When the number of bosons per lattice site is large, there is a wide parameter
regime where the effective boson interactions are strong, but the ground state
remains a superfluid (and not a Mott insulator): we describe the conditions
under which the dynamics in this regime can be described by a discrete
Gross-Pitaevskii equation. We describe the evolution of the phase coherence
after the system is initially prepared in a Mott insulating state, and then
allowed to evolve after a sudden change in parameters places it in a regime
with a superfluid ground state. We also consider initial conditions with a "pi
phase" imprint on a superfluid ground state (i.e. the initial phases of
neighboring wells differ by pi), and discuss the subsequent appearance of
density wave order and "Schrodinger cat" states.Comment: 16 pages, 11 figures; (v2) added reference
Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field
We study the insulator-superfluid transition of spin-1 bosons in an optical
lattice in a uniform magnetic field. Based on a mean-field approximation we
obtained a zero-temperature phase diagram. We found that depending on the
particle number the transition for bosons with antiferromagnetic interaction
may occur into different superfluid phases with spins aligned along or opposite
to the field direction. This is qualitatively different from the field-free
transition for which the mean-field theory predicts a unique (polar) superfluid
state for any particle number.Comment: 10 pages, 2 eps figure
Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations and focus on finite
temperature effects. We show in two different cases, ferro- and
antiferromagnetic spin-spin interactions, that the phase diagram is composed of
solid Mott phases, liquid phases and superfluid phases. In the
antiferromagnetic case, the superfluid (SF) is polarized while the Mott
insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand,
in the ferromagnetic case, none of the phases is polarized. The
superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type
whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure
Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study
We report results of density-functional theory calculations on the
structural, magnetic, and electronic properties of (1x1)-structures of Co on
Cu(001) for coverages up to two monolayers. In particular we discuss the
tendency towards phase separation in Co islands and the possibility of
segregation of Cu on top of the Co-film. A sandwich structure consisting of a
bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy
configuration. We also discuss a bilayer c(2x2)-alloy which may form due to
kinetic reasons, or be stabilized at strained surface regions. Furthermore, we
study the influence of magnetism on the various structures and, e.g., find that
Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Nucleon Axial Form Factor from Lattice QCD
Results for the isovector axial form factors of the proton from a lattice QCD
calculation are presented for both point-split and local currents. They are
obtained on a quenched lattice at with Wilson
fermions for a range of quark masses from strange to charm. We determine the
finite lattice renormalization for both the local and point-split currents of
heavy quarks. Results extrapolated to the chiral limit show that the
dependence of the axial form factor agrees reasonably well with experiment. The
axial coupling constant calculated for the local and the point-split
currents is about 6\% and 12\% smaller than the experimental value
respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0
- âŠ