11 research outputs found
Logic Programming and Logarithmic Space
We present an algebraic view on logic programming, related to proof theory
and more specifically linear logic and geometry of interaction. Within this
construction, a characterization of logspace (deterministic and
non-deterministic) computation is given via a synctactic restriction, using an
encoding of words that derives from proof theory.
We show that the acceptance of a word by an observation (the counterpart of a
program in the encoding) can be decided within logarithmic space, by reducing
this problem to the acyclicity of a graph. We show moreover that observations
are as expressive as two-ways multi-heads finite automata, a kind of pointer
machines that is a standard model of logarithmic space computation