2 research outputs found
Biodegradable composite porous poly(dl-lactide-co-glycolide) scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition
In recent decades, tissue engineering strategies have been proposed for the treatment of musculoskeletal diseases and bone fractures to overcome the limitations of the traditional surgical approaches based on allografts and autografts. In this work we report the development of a composite porous poly(dl-lactide-co-glycolide) scaffold suitable for bone regeneration. Scaffolds were produced by thermal sintering of porous microparticles. Next, in order to improve cell adhesion to the scaffold and subsequent proliferation, the scaffolds were coated with the osteoconductive biopolymers chitosan and sodium alginate, in a process that exploited electrostatic interactions between the positively charged biopolymers and the negatively charged PLGA scaffold. The resulting scaffolds were characterized in terms of porosity, degradation rate, mechanical properties, biocompatibility and suitability for bone regeneration. They were found to have an overall porosity of 3c85% and a degradation half time of 3c2\u2009weeks, considered suitable to support de novo bone matrix deposition from mesenchymal stem cells. Histology confirmed the ability of the scaffold to sustain adipose-derived mesenchymal stem cell adhesion, infiltration, proliferation and osteo-differentiation. Histological staining of calcium and microanalysis confirmed the presence of calcium phosphate in the scaffold sections
Amelogenin-derived peptides in bone regeneration: A systematic review
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration. In this article, the authors combined a systematic and a narrative review. The former is focused on the existing scientific evidence on LRAP, TRAP, SP, and C11\u2019s ability to induce the production of mineralized extracellular matrix, while the latter is concentrated on the structure and function of amelogenin and amelogenin-derived peptides. Overall, the collected data suggest that LRAP and SP are able to induce stromal stem cell differentiation towards osteoblastic phenotypes; specifically, SP seems to be more reliable in bone regenerative approaches due to its osteoinduction and the absence of immunogenicity. However, even if some evidence is convincing, the limited number of studies and the scarcity of in vivo studies force us to wait for further investigations before drawing a solid final statement on the real potential of amelogenin-derived peptides in bone tissue engineering