510 research outputs found
The electric field response to the growth phase and expansion phase onset of a small isolated substorm
International audienceWe capitalise on the very large field of view of the Halley HF radar to provide a comprehensive description of the electric field response to the substorm growth phase and expansion phase onset of a relatively simple isolated substorm ( |AL| 12 h) of magnetic quiescence, such that prior to the start of the growth phase, the apparent latitudinal motion of the radar backscatter returns is consistent with the variation in latitude of the quiet-time auroral oval with magnetic local time. The growth phase is characterised by an increasing, superimposed equatorward motion of the equatorward edge of the radar backscatter as the auroral oval expands. Within this backscatter region, there is a poleward gradient in the Doppler spectral width, which we believe to correspond to latitudinal structure in auroral emissions and magnetospheric precipitation. During the growth phase the ionospheric convection is dominated by a relatively smooth large-scale flow pattern consistent with the expanding DP2 (convection) auroral electrojets. Immediately prior to substorm onset the ionospheric convection observed by the radar in the midnight sector has a predominantly equatorward flow component. At substorm onset a dramatic change occurs and a poleward flow component prevails. The timing and location are quite remarkable. The timing of the flow change is within one minute of the dispersionless injection observed at geostationary orbit and the Pi2 magnetic signature on the ground. The location shows that this sudden change in flow is due to the effect of the upward field aligned current of the substorm current wedge imposed directly within the Halley radar field of view
Recommended from our members
New perspectives on substorm injections
There has been significant progress in understanding substorm injections since the Third International Conference on Substorms in 1996. Progress has come from a combination of new theories, quantitative modeling, and observations--particularly multi-satellite observations. There is now mounting evidence that fast convective flows are the mechanism that directly couples substorm processes in the mid tail, where reconnection occurs, with substorm processes the inner magnetosphere where Pi2 pulsations, auroral breakups, and substorm injections occur. This paper presents evidence that those flows combined with an earthward-propagating compressional wave are responsible for substorm injections and discusses how that model can account for various substorm injection signatures
Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model
As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects
Recommended from our members
Statistical investigation on equatorial pitch angle distribution of energetic electrons in Earth's outer radiation belt during CME- and CIR-driven storms
We present a statistical investigation (September 2012 - September 2017) of pitch angle distribution (PAD) of energetic electrons (∼30 keV - 1 MeV) in the outer radiation belt (L ≥ 3) during CME- and CIR-driven geomagnetic storms using Van Allen Probe measurements. We selected geomagnetic storms based on minimum of SYM-H being less than -50 nT and classified the storms according to their drivers. Thus, we obtained 23 CME- and 24 CIR-driven storms. During the storm intervals, pitch angle resolved electron flux measurements are obtained from the MagEIS instrument on-board Van Allen Probe-A spacecraft. We assume symmetric pitch angle distributions around 90° pitch angle and fit the observed PADs with Legendre polynomials after propagating them to the magnetic equator. Legendre coefficients c2 and c4, and the ratio R = |c2/c4| are used to categorize the different PAD types. To resolve the spatio-temporal distribution of PADs, these coefficients are binned in 5 L-shell bins, 12 MLT bins for seven energy channels and four storm phases. We found that several hundreds of keV electrons exhibit clear dependence on local time, storm phases and storm drivers, with increased anisotropy for CME-driven storms during main and early recovery phases. On the contrary, we found that tens of keV electrons do not exhibit significant dependence on these parameters. We have discussed the different physical mechanisms responsible for the observed MLT dependent PADs and found drift-shell splitting to be the major contributor.
</p
Recommended from our members
NOx and O3 above a tropical rainforest: an analysis with a global and box model
A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements
Comparison of multiple and logistic regression analyses of relativistic electron flux enhancement at geosynchronous orbit following storms.
Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the ultra low frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In this work we compared relativistic electron flux post storm vs. pre‐storm using three methods of analysis: 1) multiple regression to predict flux values following storms, 2) multiple regression to predict the size and direction of the change in electron flux, and 3) multiple logistic regression to predict only the probability of the flux rising or falling. We determined which is the most predictive model, and which factors are most influential. We found that a linear regression predicting the difference in pre‐storm and post storm flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had slightly weaker predictive abilities than the other two models, but had most value in providing a prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and VLF waves, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not improve any of the models, and were deemed unnecessary for effective predictions
Recommended from our members
The energy spectrometer for particles (ESP): Instrument description and orbital performance
The ESP detector is functionally described, along with the pertinent orbital and spin properties of the spacecraft that supports it. The phoswiched plastic/BGO scintillators sensor design, electronic implementation, and resulting data types are recounted, and the ground calibration procedures are reported. Several illustrative examples of data are given, including the solar proton event of 29 September 1989, and the nearly periodic episodes of high relativistic electron flux that are associated with solar coronal holes which have been a dominant feature of the space weather over the past few years. 2 refs., 10 figs., 1 tab
Automated Coronal Hole Detection using Local Intensity Thresholding Techniques
We identify coronal holes using a histogram-based intensity thresholding
technique and compare their properties to fast solar wind streams at three
different points in the heliosphere. The thresholding technique was tested on
EUV and X-ray images obtained using instruments onboard STEREO, SOHO and
Hinode. The full-disk images were transformed into Lambert equal-area
projection maps and partitioned into a series of overlapping sub-images from
which local histograms were extracted. The histograms were used to determine
the threshold for the low intensity regions, which were then classified as
coronal holes or filaments using magnetograms from the SOHO/MDI. For all three
instruments, the local thresholding algorithm was found to successfully
determine coronal hole boundaries in a consistent manner. Coronal hole
properties extracted using the segmentation algorithm were then compared with
in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results
indicate that flux tubes rooted in coronal holes expand super-radially within 1
AU and that larger (smaller) coronal holes result in longer (shorter) duration
high-speed solar wind streams
The Response of Earth's Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers
A statistical study was conducted of Earth's radiation belt electron response to geomagnetic storms using NASA's Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H 1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L similar to 4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of similar to 1-MeV electrons around L similar to 5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures
- …