530 research outputs found

    Can British Columbia Achieve Electricity Self-Sufficiency and Meet its Renewable Portfolio Standard?

    Get PDF
    British Columbia’s energy policy is at a crossroads; the province has set a goal of electricity self-sufficiency, a 93% renewable portfolio standard and provincial natural gas strategy that could increase electricity consumption by 2,500-3,800 MW. To ascertain the reality of BC’s supply position, we model the physical characteristics of BC’s hydroelectric generating system introducing variable head heights for the two dominant power stations. Using historical inflow and reservoir level data, we apply our linear programming model to investigate whether BC is capable of meeting is self-sufficiency goals under various supply and demand scenarios

    Closed-Time Path Integral Formalism and Medium Effects of Non-Equilibrium QCD Matter

    Get PDF
    We apply the closed-time path integral formalism to study the medium effects of non-equilibrium gluon matter. We derive the medium modified resummed gluon propagator to the one loop level in non-equilibrium in the covariant gauge. The gluon propagator we derive can be used to remove the infrared divergences in the secondary parton collisions to study thermalization of minijet parton plasma at RHIC and LHC.Comment: Final version, To appear in Physical Review D, Minor modification, reference adde

    Adiabatic elimination in quantum stochastic models

    Get PDF
    We consider a physical system with a coupling to bosonic reservoirs via a quantum stochastic differential equation. We study the limit of this model as the coupling strength tends to infinity. We show that in this limit the solution to the quantum stochastic differential equation converges strongly to the solution of a limit quantum stochastic differential equation. In the limiting dynamics the excited states are removed and the ground states couple directly to the reservoirs.Comment: 17 pages, no figures, corrected mistake

    Neutrino flavor conversion in a neutrino background: single- versus multi-particle description

    Full text link
    In the early Universe, or near a supernova core, neutrino flavor evolution may be affected by coherent neutrino-neutrino scattering. We develop a microscopic picture of this phenomenon. We show that coherent scattering does not lead to the formation of entangled states in the neutrino ensemble and therefore the evolution of the system can always be described by a set of one-particle equations. We also show that the previously accepted formalism overcounts the neutrino interaction energy; the correct one-particle evolution equations for both active-active and active-sterile oscillations contain additional terms. These additional terms modify the index of refraction of the neutrino medium, but have no effect on oscillation physics.Comment: 12 pages, 3 figures, minor typos correcte

    Infrared Behaviour of The Gluon Propagator in Non-Equilibrium Situations

    Get PDF
    The infrared behaviour of the medium modified gluon propagator in non-equilibrium situations is studied in the covariant gauge using the Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic screening mass is non-zero at the one loop level whenever the initial gluon distribution function is non isotropic with the assumption that the distribution function of the gluon is not divergent at zero transverse momentum. For isotropic gluon distribution functions, such as those describing local equilibrium, the magnetic mass at one loop level is zero which is consistent with finite temperature field theory results. Assuming that a reasonable initial gluon distribution function can be obtained from a perturbative QCD calculation of minijets, we determine these out of equilibrium values for the initial magnetic and Debye screening masses at energy densities appropriate to RHIC and LHC. We also compare the magnetic masses obtained here with those obtained using finite temperature lattice QCD methods at similar temperatures at RHIC and LHC.Comment: 21 pages latex, 4 figures, final version to be published in Phys. Rev.

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    High-Precision Branching Ratio Measurement for the Superallowed + Emitter 74Rb

    Get PDF
    A high-precision branching-ratio measurement for the superallowed ÎČ + decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electronpositron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted ÎČ particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting Îł rays that were emitted following Gamow-Teller and nonanalog Fermi ÎČ + decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring ÎČ-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4) × 108 detected 74Rb ÎČ decays. A total of 58 Îł -ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0 = 99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed f t value of 3082.8(65) s. Comparisons between this superallowed f t value and the world-average-corrected Ft value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.IS

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore