284 research outputs found
Probing Noncommutative Space-Time in the Laboratory Frame
The phenomenological investigation of noncommutative space-time in the
laboratory frame are presented. We formulate the apparent time variation of
noncommutativity parameter in the laboratory frame due to the
earth's rotation. Furthermore, in the noncommutative QED, we discuss how to
probe the electric-like component
by the
process at future linear collider.
We may determine the magnitude and the direction of
by detailed study of the apparent time
variation of total cross section.
In case of us observing no signal, the upper limit on the magnitude of
can be determined independently of its
direction.Comment: 12 pages, 7 figures, typos are corrected, one graph have been added
in figure
Cosmological expansion and local systems: a Lema\^{i}tre-Tolman-Bondi model
We propose a Lema\^{i}tre-Tolman-Bondi system mimicking a two-body system to
address the problem of the cosmological expansion versus local dynamics. This
system is strongly bound but participates in the cosmic expansion and is
exactly comoving with the cosmic substratum
Thermal leptogenesis in a model with mass varying neutrinos
In this paper we consider the possibility of neutrino mass varying during the
evolution of the Universe and study its implications on leptogenesis.
Specifically, we take the minimal seesaw model of neutrino masses and introduce
a coupling between the right-handed neutrinos and the dark energy scalar field,
the Quintessence. In our model, the right-handed neutrino masses change as the
Quintessence scalar evolves. We then examine in detail the parameter space of
this model allowed by the observed baryon number asymmetry. Our results show
that it is possible to lower the reheating temperature in this scenario in
comparison with the case that the neutrino masses are unchanged, which helps
solve the gravitino problem. Furthermore, a degenerate neutrino mass patten
with larger than the upper limit given in the minimal leptogenesis
scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
- …