48 research outputs found

    Residential aged care residents and components of end of life care in an Australian hospital

    Get PDF
    Published online: 09 June 2018Background: With ageing of Australians, the numbers of residential aged care (RAC) residents is rising. This places a spotlight on decisions about appropriate care for this population, including hospitalisation and end-of-life (EOL) care. The aim was to study a sample of RAC residents who attended and died in hospital, to quantify measurable components of EOL care so as to describe the extent of palliative care required. Methods: A retrospective case-note review of hospital records was conducted in Adelaide, Australia. Participants were 109 RAC residents who attended from July 2013 to June 2014 and died in hospital. Measurements were advance care planning, health care input from the RAC facilities to hospital and components of EOL care. Residents with and without advanced dementia were compared. Results: Advance care directives (ACDs) were present from 11 to 50%, and advance care plans (ACPs) at 60%. There were more ACPs, resuscitation orders (for/against) and do-not-hospitalise orders in residents with advanced dementia than those without. General practitioner (GP) and extended care paramedic (ECP) input on decisions for hospital transfer were 30% and 1 %. Mean hospital stay to death was 5.2 days. For residents admitted under non-palliative care teams, specialist palliative care (SPC) was needed for phone advice in 5%, consultation in 45%, transfer to palliative care unit in 37%, and takeover by SPC team in 19%. Mean number of documented goals-of-care discussions with family/ caregiver was 1.7. In the last 3 days of life, the mean daily number of doses of EOL medications was 4.2. Continuous subcutaneous infusion was commenced in 35%. Conclusion: Staff in RAC need to be adequately resourced to make complex decisions about whether to transfer to hospital. RAC nurses are mainly making these decisions as GP and ECP input were suboptimal. Ways to support nurses and optimise decision-making are needed. Advance care planning can be improved, especially documentation of EOL wishes and hospitalisation orders. By describing the components of EOL care, it is hoped providers and policy makers have more information to assist with making decisions about what is the most appropriate care for this population.Laurence Jee Peng Leong and Gregory Brian Crawfor

    A bizarre case of accessory larynx in an infant with OEIS syndrome

    Get PDF
    We report a bizarre case of accessory larynx in an infant with OEIS syndrome (omphalocele, cloacal exstrophy, imperforated anus & spinal defects). This is the first reported case in literature of a duplicate accessory larynx which is a mirror image of the true larynx. A congenital duplication of the larynx is a rare anomaly and can present in various forms. In this case, the infant presented with recurrent lung infection and inability to wean off oxygen. Scope revealed severe laryngomalacia in addition to the accessory larynx. Hence, supraglottoplasty was done with aim to resolve the lung and airway problem

    Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut

    Get PDF
    Chronic disruption of the intestinal microbiota in adult cystic fibrosis (CF) patients is associated with local and systemic inflammation, and has been linked to the risk of serious comorbidities. Supplementation with high amylose maize starch (HAMS) might provide clinical benefit by promoting commensal bacteria and the biosynthesis of immunomodulatory metabolites. However, whether the disrupted CF gut microbiota has the capacity to utilise these substrates is not known. We combined metagenomic sequencing, in vitro fermentation, amplicon sequencing, and metabolomics to define the characteristics of the faecal microbiota in adult CF patients and assess HAMS fermentation capacity. Compared to healthy controls, the faecal metagenome of adult CF patients had reduced bacterial diversity and prevalence of commensal fermentative clades. In vitro fermentation models seeded with CF faecal slurries exhibited reduced acetate levels compared to healthy control reactions, but comparable levels of butyrate and propionate. While the commensal genus Faecalibacterium was strongly associated with short chain fatty acid (SCFA) production by healthy microbiota, it was displaced in this role by Clostridium sensu stricto 1 in the microbiota of CF patients. A subset of CF reactions exhibited enterococcal overgrowth, resulting in lactate accumulation and reduced SCFA biosynthesis. The addition of healthy microbiota to CF faecal slurries failed to displace predominant CF taxa, or substantially influence metabolite biosynthesis. Despite significant microbiota disruption, the adult CF gut microbiota retains the capacity to exploit HAMS. Our findings highlight the potential for taxa associated with the altered CF gut microbiotato mediate prebiotic effects in microbial systems subject to ongoing perturbation, irrespective of the depletion of common commensal clades

    Impact of long-term erythromycin therapy on the oropharyngeal microbiome and resistance gene reservoir in non-cystic fibrosis bronchiectasis

    Get PDF
    Published 18 April 2018Long-term macrolide therapy reduces rates of pulmonary exacerbation in bronchiectasis. However, little is known about the potential for macrolide therapy to alter the composition and function of the oropharyngeal commensal microbiota or to increase the carriage of transmissible antimicrobial resistance. We assessed the effect of long-term erythromycin on oropharyngeal microbiota composition and the carriage of transmissible macrolide resistance genes in 84 adults with bronchiectasis, enrolled in the Bronchiectasis and Low-dose Erythromycin Study (BLESS) 48-week placebo-controlled trial of twice-daily erythromycin ethylsuccinate (400 mg). Oropharyngeal microbiota composition and macrolide resistance gene carriage were determined by 16S rRNA gene amplicon sequencing and quantitative PCR, respectively. Long-term erythromycin treatment was associated with a significant increase in the relative abundance of oropharyngeal Haemophilus parainfluenzae (P = 0.041) and with significant decreases in the relative abundances of Streptococcus pseudopneumoniae (P = 0.024) and Actinomyces odontolyticus (P = 0.027). Validation of the sequencing results by quantitative PCR confirmed a significant decrease in the abundance of Actinomyces spp. (P = 0.046). Erythromycin treatment did not result in a significant increase in the number of subjects who carried erm(A), erm(B), erm(C), erm(F), mef(A/E), and msrA macrolide resistance genes. However, the abundance of erm(B) and mef(A/E) gene copies within carriers who had received erythromycin increased significantly (P < 0.05). Our findings indicate that changes in oropharyngeal microbiota composition resulting from long-term erythromycin treatment are modest and are limited to a discrete group of taxa. Associated increases in levels of transmissible antibiotic resistance genes within the oropharyngeal microbiota highlight the potential for this microbial system to act as a reservoir for resistance.IMPORTANCE Recent demonstrations that long-term macrolide therapy can prevent exacerbations in chronic airways diseases have led to a dramatic increase in their use. However, little is known about the wider, potentially adverse impacts of these treatments. Substantial disruption of the upper airway commensal microbiota might reduce its contribution to host defense and local immune regulation, while increases in macrolide resistance carriage would represent a serious public health concern. Using samples from a randomized controlled trial, we show that low-dose erythromycin given over 48 weeks influences the composition of the oropharyngeal commensal microbiota. We report that macrolide therapy is associated with significant changes in the relative abundances of members of the Actinomyces genus and with significant increases in the carriage of transmissible macrolide resistance. Determining the clinical significance of these changes, relative to treatment benefit, now represents a research priority.Jocelyn M. Choo, Guy C. J. Abell, Rachel Thomson, Lucy Morgan, Grant Waterer, David L. Gordon, Steven L. Taylor, Lex E. X. Leong, Steve L. Wesselingh, Lucy D. Burr, Geraint B. Roger

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis

    No full text
    Background: Cystic fibrosis (CF) is characterised by reduced airway clearance, microbial accumulation, inflammation, and lung function decline. Certain bacterial species may contribute disproportionately to worsening lung disease. However, the relative importance of these microorganisms compared to the ab- solute abundance of all bacteria is uncertain. We aimed to identify the characteristics of lower airway microbiology that best reflect CF airway inflammation and disease in children. Methods: Analysis was performed on bronchoalveolar lavage (BAL) fluid from 78 participants of the Australasian CF Bronchoalveolar Lavage (ACFBAL) clinical trial, aged 4.5–5.5 years. Universal bacterial quantitative PCR (qPCR), species-specific qPCR, and 16S rRNA gene sequencing were performed on DNA ex- tracts to determine total bacterial load, species-specific load and taxa relative abundance. Quantification of prespecified pathogens was performed by culture-based methods. Bacteriological data were related to neutrophil counts, interleukin-8, lung function, and two computed-tomography based measures, CF-CT (as the primary measure) and PRAGMA. Results: Of all bacteriological measures assessed, total bacterial load determined by qPCR correlated most strongly with structural disease (CF-CT total score, r s = 0.30, P = 0.0095). Specifically, total bacterial load correlated with bronchiectasis, airway wall thickening, mucus plugging and parenchymal disease sub-scores. In contrast, culture-based quantification , microbiota-derived measures, and pathogen-specific qPCR-based quantification were weakly associated with total CF-CT. Regression analyses supported cor- relation findings, with total bacterial load explaining the greatest variance in total CF-CT (R 2 = 0.097, P = 0.0061). Correlations with PRAGMA score were comparable to CF-CT total score. Conclusions: Within the ACFBAL trial, culture-independent quantification of total bacteria provided the most clinically-informative bacteriological measure in 5-year-old CF patients.Steven L. Taylor, Lex E.X. Leong, Kerry L. Ivey, Steve Wesselingh, Keith Grimwood, Claire E. Wainwright, Geraint B. Rogers, On behalf of the Australasian Cystic Fibrosis Bronchoalveolar Lavage, (ACFBAL), study grou

    Culture-independent detection of nontuberculous mycobacteria in clinical respiratory samples

    No full text
    Culture-based detection of nontuberculous Mycobacteria (NTM) in respiratory samples is time consuming and can be subject to overgrowth by nonmycobacterial bacteria. We describe a single-reaction TaqMan quantitative PCR assay for the direct detection of NTM species in clinical samples that is specific, sensitive, and robust.Gianny P. Scoleri, Jocelyn M. Choo, Lex E. X. Leong, Thomas R. Goddard, Lisa Shephard, Lucy D. Burr, Ivan Bastian, Rachel M. Thomson, Geraint B. Roger
    corecore