6 research outputs found
Fluctuations for the Ginzburg-Landau Interface Model on a Bounded Domain
We study the massless field on , where is a bounded domain with smooth boundary, with Hamiltonian
\CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed
to be symmetric and uniformly convex. This is a general model for a
-dimensional effective interface where represents the height. We
take our boundary conditions to be a continuous perturbation of a macroscopic
tilt: for , , and
continuous. We prove that the fluctuations of linear
functionals of about the tilt converge in the limit to a Gaussian free
field on , the standard Gaussian with respect to the weighted Dirichlet
inner product for some explicit . In a subsequent article,
we will employ the tools developed here to resolve a conjecture of Sheffield
that the zero contour lines of are asymptotically described by , a
conformally invariant random curve.Comment: 58 page
A version of Hörmander's theorem for the fractional Brownian motion
International audienc