19 research outputs found

    Kakutani Dichotomy on Free States

    Full text link
    Two quasi-free states on a CAR or CCR algebra are shown to generate quasi-equivalent representations unless they are disjoint.Comment: 12 page

    One-and-a-half quantum de Finetti theorems

    Full text link
    We prove a new kind of quantum de Finetti theorem for representations of the unitary group U(d). Consider a pure state that lies in the irreducible representation U_{mu+nu} for Young diagrams mu and nu. U_{mu+nu} is contained in the tensor product of U_mu and U_nu; let xi be the state obtained by tracing out U_nu. We show that xi is close to a convex combination of states Uv, where U is in U(d) and v is the highest weight vector in U_mu. When U_{mu+nu} is the symmetric representation, this yields the conventional quantum de Finetti theorem for symmetric states, and our method of proof gives near-optimal bounds for the approximation of xi by a convex combination of product states. For the class of symmetric Werner states, we give a second de Finetti-style theorem (our 'half' theorem); the de Finetti-approximation in this case takes a particularly simple form, involving only product states with a fixed spectrum. Our proof uses purely group theoretic methods, and makes a link with the shifted Schur functions. It also provides some useful examples, and gives some insight into the structure of the set of convex combinations of product states.Comment: 14 pages, 3 figures, v4: minor additions (including figures), published versio

    Continuity and Stability of Partial Entropic Sums

    Full text link
    Extensions of Fannes' inequality with partial sums of the Tsallis entropy are obtained for both the classical and quantum cases. The definition of kth partial sum under the prescribed order of terms is given. Basic properties of introduced entropic measures and some applications are discussed. The derived estimates provide a complete characterization of the continuity and stability properties in the refined scale. The results are also reformulated in terms of Uhlmann's partial fidelities.Comment: 9 pages, no figures. Some explanatory and technical improvements are made. The bibliography is extended. Detected errors and typos are correcte

    Monogamy of Correlations vs. Monogamy of Entanglement

    Get PDF
    A fruitful way of studying physical theories is via the question whether the possible physical states and different kinds of correlations in each theory can be shared to different parties. Over the past few years it has become clear that both quantum entanglement and non-locality (i.e., correlations that violate Bell-type inequalities) have limited shareability properties and can sometimes even be monogamous. We give a self-contained review of these results as well as present new results on the shareability of different kinds of correlations, including local, quantum and no-signalling correlations. This includes an alternative simpler proof of the Toner-Verstraete monogamy inequality for quantum correlations, as well as a strengthening thereof. Further, the relationship between sharing non-local quantum correlations and sharing mixed entangled states is investigated, and already for the simplest case of bi-partite correlations and qubits this is shown to be non-trivial. Also, a recently proposed new interpretation of Bell's theorem by Schumacher in terms of shareability of correlations is critically assessed. Finally, the relevance of monogamy of non-local correlations for secure quantum key distribution is pointed out, although, and importantly, it is stressed that not all non-local correlations are monogamous.Comment: 12 pages, 2 figures. Invited submission to a special issue of Quantum Information Processing. v2: Published version. Open acces

    Notes on entropic characteristics of quantum channels

    Full text link
    One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the qq-average output entropy of degree q1q\geq1 is bounded from above by the qq-entropy of the input density matrix. Concavity properties of the (q,s)(q,s)-entropy exchange are considered. Fano type quantum bounds on the (q,s)(q,s)-entropy exchange are derived. We also give upper bounds on the map (q,s)(q,s)-entropies in terms of the output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly illustrated with the depolarizing channel. The bibliography is extended and updated. More explanations. To be published in Cent. Eur. J. Phy

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    The equilibrium thermodynamics of a spin-boson model

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:3630.84(DIAS-STP--87-51) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The free energy of quantum spin systems and large deviations

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:3630.84(DIAS-STP--87-44) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore