10 research outputs found
Measurements of Photolyzable Chlorine and Bromine During the Polar Sunrise Experiment
We report measurements of rapidly photolyzable chlorine (Clp; e.g., Cl2 And HOCl) and bromine (Brp; e.g., Br2 and HOBr) in the high Arctic using a newly developed photoactive halogen detector (PHD). Ground level ambient air was sampled daily from mid‐February through mid‐April in the Canadian Arctic at Alert, Northwest Territories (82.5°N, 62.3°W), as part of the Polar Sunrise Experiment (PSE) 1995. Concentrations of “total photolyzable chlorine” varied from <9 to 100 pptv as Cl2 and that of “total photolyzable bromine” from <4 to 38 pptv as Br2. High concentration episodes of chlorine were observed only prior to sunrise (March 21), while high concentration episodes of bromine were measured throughout the study. The high concentrations of photolyzable chlorine and bromine prior to sunrise suggest a “dark” production mechanism that we assume yields Cl2 and Br2. An inverse correlation of bromine with ozone is clearly present in one major ozone depletion episode at the end of March. A trajectory analysis, taken with the differences in measured levels of photolyzable chlorine and bromine after sunrise, imply different production mechanisms for these two types of species. A steady state analysis of the data for one ozone depletion episode suggests a [Br]/[Cl] ratio in the range 100–300. The high concentrations of photolyzable bromine after sunrise imply the existence of a precursor other than aerosol bromide
Measurements of photolyzable halogen compounds and bromine radicals during the Polar Sunrise Experiment 1997
As part of the Polar Sunrise Experiment (PSE) 1997, concentrations of halogen species thought to be involved in ground level Arctic ozone depletion were made at Alert, NWT, Canada (82.5°N, 62.3°W) during the months of March and April, 1997. Measurements were made of photolyzable chlorine (Cl2 and HOCl) and bromine (Br2 and HOBr) using the Photoactive Halogen Detector (PHD), and bromine radicals (BrOx) using a modified radical amplifier. During the sampling period between Julian Day 86 (March 27) and Day 102 (April 12), two ozone depletion episodes occurred, the most notable being on days 96-99, when ozone levels were below detectable limits (1 ppbv). Concentrations of BrOx above the 4 pptv detection limit were found for a significant part of the study, both during and outside of depletion events. The highest BrOx concentrations were observed at the end of the depletion event, when the concentration reached 15 pptv. We found substantial amounts of Br2 in the absence of O3, indicating that O3 is not a necessary requirement for production of Br2. There is also Br2 present when winds are from the south, implying local scale (e.g. from the snowpack) production. During the principal O3 depletion event, the HOBr concentration rose to 260 pptv, coincident with the BrOx maximum. This implies a steady state HO2 concentration of 6 pptv. During a partial O3 depletion event, we estimate that the flux of Br2 from the surface is about 10 times greater than that for Cl2
Measurement Technique for the Determination of Photolyzable Chlorine and Bromine in the Atmosphere
A technique has been developed to enable measurement of photolyzable chlorine and bromine at trace levels in the troposphere. In this method, ambient air is drawn through a cylindrical flow cell, which is irradiated with a Xe arc lamp. In the reaction vessel of the photoactive halogen detector (PHD), photolytically active molecules Clp (including Cl2, HOCl, ClNO, ClNO2, and ClONO2) and Brp (including Br2, HOBr, BrNO, BrNO2, and BrONO2) are photolyzed, and the halogen atoms produced react with propene to form stable halogenated products. These products are then sampled and subsequently separated and detected by gas chromatography. The system is calibrated using low concentration mixtures of Cl2 and Br2 in air from commercially available permeation sources. We obtained detection limits of 4 pptv and 9 pptv as Br2 and Cl2, respectively, for 36 L samples
Fc Binding by FcγRIIa Is Essential for Cellular Activation by the Anti-FcγRIIa mAbs 8.26 and 8.2
FcγR activity underpins the role of antibodies in both protective immunity and auto-immunity and importantly, the therapeutic activity of many monoclonal antibody therapies. Some monoclonal anti-FcγR antibodies activate their receptors, but the properties required for cell activation are not well defined. Here we examined activation of the most widely expressed human FcγR; FcγRIIa, by two non-blocking, mAbs, 8.26 and 8.2. Crosslinking of FcγRIIa by the mAb F(ab’)2 regions alone was insufficient for activation, indicating activation also required receptor engagement by the Fc region. Similarly, when mutant receptors were inactivated in the Fc binding site, so that intact mAb was only able to engage receptors via its two Fab regions, again activation did not occur. Mutation of FcγRIIa in the epitope recognized by the agonist mAbs, completely abrogated the activity of mAb 8.26, but mAb 8.2 activity was only partially inhibited indicating differences in receptor recognition by these mAbs. FcγRIIa inactivated in the Fc binding site was next co-expressed with the FcγRIIa mutated in the epitope recognized by the Fab so that each mAb 8.26 molecule can contribute only three interactions, each with separate receptors, one via the Fc and two via the Fab regions. When the Fab and Fc binding were thus segregated onto different receptor molecules receptor activation by intact mAb did not occur. Thus, receptor activation requires mAb 8.26 Fab and Fc interaction simultaneously with the same receptor molecules. Establishing the molecular nature of FcγR engagement required for cell activation may inform the optimal design of therapeutic mAbs