121 research outputs found
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
Electronic structure of fluorides: general trends for ground and excited state properties
The electronic structure of fluorite crystals are studied by means of density
functional theory within the local density approximation for the exchange
correlation energy. The ground-state electronic properties, which have been
calculated for the cubic structures ,, , ,
, -, using a plane waves expansion of the wave
functions, show good comparison with existing experimental data and previous
theoretical results. The electronic density of states at the gap region for all
the compounds and their energy-band structure have been calculated and compared
with the existing data in the literature. General trends for the ground-state
parameters, the electronic energy-bands and transition energies for all the
fluorides considered are given and discussed in details. Moreover, for the
first time results for have been presented
Regulatory T cell proportion and phenotype are altered in women using oral contraception
Advance access publication 04 July 2022Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells—especially of the effector memory Treg cell subset—associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.Lachlan M. Moldenhauer, Min Jin, Jasmine J. Wilson, Ella S. Green, David J. Sharkey, Mark D. Salkeld, Thomas C. Bristow, M. Louise Hull, Gustaaf A. Dekker, and Sarah A. Robertso
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
- …