126,255 research outputs found
Superradiance in spin- particles: Effects of multiple levels
We study the superradiance dynamics in a dense system of atoms each of which
can be generally a spin- particle with an arbitrary half-integer. We
generalize Dicke's superradiance point of view to multiple-level systems, and
compare the results based on a novel approach we have developed in {[}Yelin
\textit{et al.}, arXiv:quant-ph/0509184{]}. Using this formalism we derive an
effective two-body description that shows cooperative and collective effects
for spin- particles, taking into account the coherence of transitions
between different atomic levels. We find that the superradiance, which is
well-known as a many-body phenomenon, can also be modified by multiple level
effects. We also discuss the feasibility and propose that our approach can be
applied to polar molecules, for their vibrational states have multi-level
structure which is partially harmonic.Comment: 11 pages, 7 figure
Thermalization and temperature distribution in a driven ion chain
We study thermalization and non-equilibrium dynamics in a dissipative quantum
many-body system -- a chain of ions with two points of the chain driven by
thermal bath under different temperature. Instead of a simple linear
temperature gradient as one expects from the classical heat diffusion process,
the temperature distribution in the ion chain shows surprisingly rich patterns,
which depend on the ion coupling rate to the bath, the location of the driven
ions, and the dissipation rates of the other ions in the chain. Through
simulation of the temperature evolution, we show that these unusual temperature
distribution patterns in the ion chain can be quantitatively tested in
experiments within a realistic time scale.Comment: 5 pages, 5 figure
Three-dimensional waves generated at Lindblad resonances in thermally stratified disks
We analyze the linear, 3D response to tidal forcing of a disk that is thin
and thermally stratified in the direction normal to the disk plane. We model
the vertical disk structure locally as a polytrope which represents a disk of
high optical depth. We solve the 3D gas-dynamic equations semi-analytically in
the neighborhood of a Lindblad resonance. These solutions match asymptotically
on to those valid away from resonances and provide solutions valid at all
radii. We obtain the following results. 1) A variety of waves are launched at
resonance. However, the f mode carries more than 95% of the torque exerted at
the resonance. 2) These 3D waves collectively transport exactly the amount of
angular momentum predicted by the 2D torque formula. 3) Near resonance, the f
mode occupies the full vertical extent of the disk. Away from resonance, the f
mode becomes confined near the surface of the disk, and, in the absence of
other dissipation mechanisms, damps via shocks. The radial length scale for
this process is roughly r_L/m (for resonant radius r_L and azimuthal wavenumber
m), independent of the disk thickness H. This wave channeling process is due to
the variations of physical quantities in r and is not due to wave refraction.
4) However, the inwardly propagating f mode launched from an m=2 inner Lindblad
resonance experiences relatively minor channeling.
We conclude that for binary stars, tidally generated waves in highly
optically thick circumbinary disks are subject to strong nonlinear damping by
the channeling mechanism, while those in circumstellar accretion disks are
subject to weaker nonlinear effects. We also apply our results to waves excited
by young planets for which m is approximately r/H and conclude that the waves
are damped on the scale of a few H.Comment: 15 pages, 3 figures, 2 colour plates, to be published in the
Astrophysical Journa
First Lattice Study of the - Transition Form Factors
Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and
Spring-8 offer new opportunities to understand in detail how nucleon resonance
() properties emerge from the nonperturbative aspects of QCD. Preliminary
data from CLAS collaboration, which cover a large range of photon virtuality
show interesting behavior with respect to dependence: in the region
, both the transverse amplitude, , and the
longitudinal amplitude, , decrease rapidly. In this work, we
attempt to use first-principles lattice QCD (for the first time) to provide a
model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
Spectrophotovoltaic orbital power generation
A system with 1000 : 1 concentration ratio is defined, using a cassegrain telescope as the first stage concentration (270 x) and compound parabolic concentrators (CPC) for the second stage concentration of 4.7 x for each spectral band. Using reported state of the art (S.O.A.) solar cells device parameters and considering structural losses due to optics and beamsplitters, the efficiencies of one to four cell systems were calculated with efficiencies varying from approximately 22% to 30%. Taking into account cost of the optics, beamsplitter, radiator, and the cost of developing new cells the most cost effective system is the GaAs/Si system
Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique
Robust design has been widely recognized as a leading method in reducing
variability and improving quality. Most of the engineering statistics
literature mainly focuses on finding "point estimates" of the optimum operating
conditions for robust design. Various procedures for calculating point
estimates of the optimum operating conditions are considered. Although this
point estimation procedure is important for continuous quality improvement, the
immediate question is "how accurate are these optimum operating conditions?"
The answer for this is to consider interval estimation for a single variable or
joint confidence regions for multiple variables.
In this paper, with the help of the bootstrap technique, we develop
procedures for obtaining joint "confidence regions" for the optimum operating
conditions. Two different procedures using Bonferroni and multivariate normal
approximation are introduced. The proposed methods are illustrated and
substantiated using a numerical example.Comment: Two tables, Three figure
- …
