27 research outputs found
DH and JH usage in murine fetal liver mirrors that of human fetal liver
In mouse and human, the regulated development of antibody repertoire diversity during ontogeny proceeds in parallel with the development of the ability to generate antibodies to an array of specific antigens. Compared to adult, the human fetal antibody repertoire limits N addition and uses specifically positioned VDJ gene segments more frequently, including V6-1 the most DH-proximal VH, DQ52, the most JH-proximal DH, and JH2, which is DH-proximal. The murine fetal antibody repertoire also limits the incorporation of N nucleotides and uses its most DH proximal VH, VH81X, more frequently. To test whether DH and JH also follow the pattern observed in human, we used the scheme of Hardy to sort B lineage cells from BALB/c fetal and neonatal liver, RT-PCR cloned and sequenced VH7183-containing VDJCμ transcripts, and then assessed VH7183-DH-JH and complementary determining region 3 of the immunoglobulin heavy chain (CDR-H3) content in comparison to the previously studied adult BALB/c mouse repertoire. Due to the deficiency in N nucleotide addition, perinatal CDR-H3s manifested a distinct pattern of amino acid usage and predicted loop structures. As in the case of adult bone marrow, we observed a focusing of CDR-H3 length and CDR-H3 loop hydrophobicity, especially in the transition from the early to late pre-B cell stage, a developmental checkpoint associated with expression of the pre-B cell receptor. However, fetal liver usage of JH-proximal DHQ52 and DH-proximal JH2 was markedly greater than that of adult bone marrow. Thus, the early pattern of DH and JH usage in mouse feta liver mirrors that of human
Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
A stochastic background of gravitational waves is expected to arise from a
superposition of many incoherent sources of gravitational waves, of either
cosmological or astrophysical origin. This background is a target for the
current generation of ground-based detectors. In this article we present the
first joint search for a stochastic background using data from the LIGO and
Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95%
upper limit on the amplitude of , of , assuming a value of the Hubble parameter
of . These new limits are a factor of seven better than the
previous best in this frequency band.Comment: 29 pages, 6 figures. For a repository of data used in the
publication, please see
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=22210. Also see the
announcement for this paper at
http://www.ligo.org/science/Publication-S5VSR1StochIso
First searches for optical counterparts to gravitational-wave candidate events
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
We present the results of a weakly modeled burst search for gravitational
waves from mergers of non-spinning intermediate mass black holes (IMBH) in the
total mass range 100--450 solar masses and with the component mass ratios
between 1:1 and 4:1. The search was conducted on data collected by the LIGO and
Virgo detectors between November of 2005 and October of 2007. No plausible
signals were observed by the search which constrains the astrophysical rates of
the IMBH mergers as a function of the component masses. In the most efficiently
detected bin centered on 88+88 solar masses, for non-spinning sources, the rate
density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.Comment: 13 pages, 4 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62326, see also the
public announcement at http://www.ligo.org/science/Publication-S5IMBH
FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS
During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type
Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run
International audienceThe first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr