526 research outputs found

    Spintronics and Quantum Dots for Quantum Computing and Quantum Communication

    Get PDF
    Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected, references adde

    Temperature dependence of the electronic structure of semiconductors and insulators

    Full text link
    The renormalization of electronic eigenenergies due to electron-phonon coupling is sizable in many materials with light atoms. This effect, often neglected in ab-initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the numerous recent progresses in this field, and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a q-point sampling inside the BZ. For q-points close to G, we show that a divergence due to non-zero Born effective charge appears in the electron-phonon matrix elements, leading to a divergence of the integral over the BZ for band extrema. Although it should vanish for non-polar materials, unphysical residual Born effective charges are usually present in ab-initio calculations. Here, we propose a solution that improves the coupled q-point convergence dramatically. For polar materials, the problem is more severe: the divergence of the integral does not disappear in the adiabatic harmonic approximation, but only in the non-adiabatic harmonic approximation. In all cases, we study in detail the convergence behavior of the renormalization as the q-point sampling goes to infinity and the imaginary broadening parameter goes to zero. This allows extrapolation, thus enabling a systematic way to converge the renormalization for both polar and non-polar materials. Finally, the adiabatic and non-adiabatic theory, with corrections for the divergence problem, are applied to the study of five semiconductors and insulators: a-AlN, b-AlN, BN, diamond and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening and the renormalized electronic bandstructure.Comment: 27 pages and 26 figure

    A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    Get PDF
    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx package

    Multipartite entanglement for continuous variables: A quantum teleportation network

    Full text link
    We show that {\it one} single-mode squeezed state distributed among NN parties using linear optics suffices to produce a truly NN-partite entangled state for any nonzero squeezing and arbitrarily many parties. From this NN-partite entangled state, via quadrature measurements of N2N-2 modes, bipartite entanglement between any two of the NN parties can be `distilled', which enables quantum teleportation with an experimentally determinable fidelity better than could be achieved in any classical scheme.Comment: 4 pages, 2 figures, published version, paper shorter, title longe

    Transmission and Spectral Aspects of Tight Binding Hamiltonians for the Counting Quantum Turing Machine

    Full text link
    It was recently shown that a generalization of quantum Turing machines (QTMs), in which potentials are associated with elementary steps or transitions of the computation, generates potential distributions along computation paths of states in some basis B. The distributions are computable and are thus periodic or have deterministic disorder. These generalized machines (GQTMs) can be used to investigate the effect of potentials in causing reflections and reducing the completion probability of computations. This work is extended here by determination of the spectral and transmission properties of an example GQTM which enumerates the integers as binary strings. A potential is associated with just one type of step. For many computation paths the potential distributions are initial segments of a quasiperiodic distribution that corresponds to a substitution sequence. The energy band spectra and Landauer Resistance (LR) are calculated for energies below the barrier height by use of transfer matrices. The LR fluctuates rapidly with momentum with minima close to or at band-gap edges. For several values of the parameters, there is good transmission over some momentum regions.Comment: 22 pages Latex, 13 postscript figures, Submitted to Phys. Rev.

    Quantum Tunneling Effect in Oscillating Friedmann Cosmology

    Get PDF
    It is shown that the tunneling effect in quantum cosmology is possible not only at the very beginning or the very end of the evolution, but also at the moment of maximum expansion of the universe. A positive curvature expanding Friedmann universe changes its state of evolution spontaneously and completely, {\it without} any changes in the matter content, avoiding recollapse, and falling into oscillations between the nonzero values of the scale factor. On the other hand, an oscillating nonsingular universe can tunnel spontaneously to a recollapsing regime. The probability of such kind of tunneling is given explicitly. It is inversely related to the amount of nonrelativistic matter (dust), and grows from a certain fixed value to unity if the negative cosmological constant approaches zero.Comment: 18 pages Latex + 2 figures available by fax upon reques

    Hawking Radiation Entropy and Horizon Divergences

    Get PDF
    We review the problem of divergences in one--loop thermodynamical quantities for matter fields in thermal equilibrium on a black hole background. We discuss a number of results obtained for various thermodynamical quantities. Then we discuss the ansatz called ``literal interpretation" of zeroth law of black hole mechanics and try to explain the diseases of the conical defect procedure in light of this ansatz. Finally, an analysis of the consequences implied by our ansatz on the calculation of the partition function is made.Comment: 32 pages, uses Phyzz
    corecore