167,925 research outputs found
Study of auxiliary propulsion requirements for large space systems. Volume 1: Executive summary
An insight into auxiliary propulsion systems (APS) requirements for large space systems (LSS) launchable by a single shuttle is presented. In an effort to scope the APS requirements for LSS, a set of generic LSSs were defined. For each generic LSS class a specific structural configuration, representative of that most likely to serve the needs of the 1980's and 1990's was defined. The environmental disturbance forces and torques which would be acting on each specific structural configuration in LEO and GEO orbits were then determined. Auxiliary propulsion requirements were determined as a function of: generic class specific configuration, size and openness of structure, orbit, angle of orientation, correction frequency, duty cycle, number and location of thrusters and direction of thrusters and APS/LSS interactions. The results of this analysis were used to define the APS characteristics of: (1) number and distribution of thrusters, (2) thruster modulation, (3) thrust level, (4) mission energy requirements, (5) total APS mass component breakdown, and (6) state of the art adequacy/deficiency
Decrease in the high energy X-ray flux from Cen XR-2. Search for X-rays from the large and small Magellanic clouds
High energy X ray sky survey data on decreased intensity of Cen XR-2, and X ray energy flux from Magellanic clouds - Mildura, Australia, October 15 and 24, 196
Flight experience with altitude hold and Mach hold autopilots on the YF-12 aircraft at Mach 3
The altitude hold mode of the YF-12A airplane was modified to include a high-pass-filtered pitch rate feedback along with optimized inner loop altitude rate proportional and integral gains. An autothrottle control system was also developed to control either Mach number or KEAS at the high-speed flight conditions. Flight tests indicate that, with the modified system, significant improvements are obtained in both altitude and speed control, and the combination of altitude and autothrottle hold modes provides the most stable aircraft platform thus far demonstrated at Mach 3 conditions
Debris control design achievements of the booster separation motors
The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented
Auxiliary propulsion requirements for large space systems
An insight into auxiliary propulsion systems (APS) requirements for large space systems (LSS) launchable by a single shuttle is presented. In an effort to scope the APS requirements for LSS, a set of generic LSSs were defined. For each generic LSS class a specific structural configuration, representative of that most likely to serve the needs of the 1980's and 1990's was defined. The environmental disturbance forces and torques which would be acting on each specific structural configuration in LEO and GEO orbits were then determined. Auxiliary propulsion requirements were determined as a function of: generic class specific configuration, size and openness of structure, orbit, angle of orientation, correction frequency, duty cycle, number and location of thrusters and direction of thrusters and APS/LSS interactions. The results of this analysis were used to define the APS characteristics of: (1) number and distribution of thrusters, (2) thruster modulation, (3) thrust level, (4) mission energy requirements, (5) total APS mass component breakdown, and (6) state of the art adequacy/deficiency
A growth path for deep space communications
Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future
The role of economics in the QUERI program: QUERI Series.
Background: The United States (U.S.) Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. Methods: We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Results: Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multisite implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses). Conclusion: Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics.implementation science; cost analysis; cost-effectiveness; health care cost; health systems;
Polarimetric measurements of simulated lunar surfaces Third interim report
Polarimetric measurements of simulated lunar surfaces for determining Apollo landing area
- …