5,082 research outputs found

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    A Cosmological No-Hair Theorem

    Full text link
    A generalisation of Price's theorem is given for application to Inflationary Cosmologies. Namely, we show that on a Schwarzschild--de Sitter background there are no static solutions to the wave or gravitational perturbation equations for modes with angular momentum greater than their intrinsic spin.Comment: 9 pages, NCL94 -TP4, (Revtex

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    Colloidal gels under shear: Strain rate effects

    Get PDF
    Attractive colloidal particles are trapped in metastable states such as colloidal gels at high attraction strengths and attractive glasses and high volume fractions. Under shear such states flow via a two step yielding process that relates to bond and cluster or cage breaking. We discuss the way the structural properties and related stress response are affected by the shear rate. At low rates colloidal gels yield during start-up shear essentially in a single step, exhibiting a single stress overshoot due to creation of compact flowing clusters. With increasing shear rate a second stress overshoot, linked with further cluster breaking up to individual particles, is becoming more pronounced. We further present the age dependence of the two step yielding and wall slip effects often taking place during rheological experiments of colloidal gels. The latter is related both with the shear rate dependent gel structure as well as the time evolution of the near wall structure

    Quasinormal Modes in three-dimensional time-dependent Anti-de Sitter spacetime

    Full text link
    The massless scalar wave propagation in the time-dependent BTZ black hole background has been studied. It is shown that in the quasi-normal ringing both the decay and oscillation time-scales are modified in the time-dependent background.Comment: 8 pages and 7 figure

    Classical stability and quantum instability of black-hole Cauchy horizons

    Full text link
    For a certain region of the parameter space {M,e,Λ}\{M,e,\Lambda\}, the Cauchy horizon of a (charged) black hole residing in de Sitter space is classically stable to gravitational perturbations. This implies that, when left to its own devices, classical theory is unable to retain full predictive power: the evolution of physical fields beyond the Cauchy horizon is not uniquely determined by the initial conditions. In this paper we argue that the Cauchy horizon of a Reissner-Nordstr\"om-de Sitter black hole must always be unstable quantum mechanically.Comment: 4 pages; uses ReVTeX; figure available upon request to [email protected]

    Pair of accelerated black holes in a de Sitter background: the dS C-metric

    Get PDF
    Following the work of Kinnersley and Walker for flat spacetimes, we have analyzed the anti-de Sitter C-metric in a previous paper. In the de Sitter case, Podolsky and Griffiths have established that the de Sitter C-metric (dS C-metric) found by Plebanski and Demianski describes a pair of accelerated black holes in the dS background with the acceleration being provided (in addition to the cosmological constant) by a strut that pushes away the two black holes or, alternatively, by a string that pulls them. We extend their analysis mainly in four directions. First, we draw the Carter-Penrose diagrams of the massless uncharged dS C-metric, of the massive uncharged dS C-metric and of the massive charged dS C-metric. These diagrams allow us to clearly identify the presence of two dS black holes and to conclude that they cannot interact gravitationally. Second, we revisit the embedding of the dS C-metric in the 5D Minkowski spacetime and we represent the motion of the dS C-metric origin in the dS 4-hyperboloid as well as the localization of the strut. Third, we comment on the physical properties of the strut that connects the two black holes. Finally, we find the range of parameters that correspond to non-extreme black holes, extreme black holes, and naked particles.Comment: 11 pages, 11 figures (RevTeX4). Published version: references adde

    Self-similar and charged spheres in the diffusion approximation

    Full text link
    We study spherical, charged and self--similar distributions of matter in the diffusion approximation. We propose a simple, dynamic but physically meaningful solution. For such a solution we obtain a model in which the distribution becomes static and changes to dust. The collapse is halted with damped mass oscillations about the absolute value of the total charge.Comment: 15 pages, 7 figure

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He^* and charge-exchange 6^6Li(n,p)6^6He^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps

    Radiative falloff in Schwarzschild-de Sitter spacetime

    Get PDF
    We consider the time evolution of a scalar field propagating in Schwarzschild-de Sitter spacetime. At early times, the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far from the black hole has no influence on the evolution. In this early epoch, the field's initial outburst is followed by quasi-normal oscillations, and then by an inverse power-law decay. At intermediate times, the power-law behavior gives way to a faster, exponential decay. At late times, the field behaves as if it were in pure de Sitter spacetime; the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this late epoch, the field's behavior depends on the value of the curvature-coupling constant xi. If xi is less than a critical value 3/16, the field decays exponentially, with a decay constant that increases with increasing xi. If xi > 3/16, the field oscillates with a frequency that increases with increasing xi; the amplitude of the field still decays exponentially, but the decay constant is independent of xi.Comment: 10 pages, ReVTeX, 5 figures, references updated, and new section adde
    corecore