357 research outputs found

    A substorm in midnight auroral precipitation

    No full text
    International audienceDMSP F7 spacecraft observations for the whole of 1986 were used to construct the empirical model of the midnight auroral precipitation during a substorm. The model includes the dynamics of different auroral precipitation boundaries and simultaneous changes in average electron precipitation energy and energy flux in different precipitation regions during all substorm phases, as well as the IMF and solar wind plasma signatures during a substorm. The analysis of the model shows a few important features of precipitation. (1) During the magnetic quietness and just before the beginning of the substorm expansive phase the latitudinal width of the auroral precipitation in the nightside sector is about 5 ? 6° CGL, while that of the auroral oval is about 2 ? 3° CGL during such periods. (2) For about 5 min before the substorm onset a decrease in the average precipitating electron energy in the equatorward part of auroral zone was observed simultaneously, with an increase in both the average electron energy and energy flux of electron precipitation in the poleward part of the auroral zone. (3) The isotropy boundary position in the beginning of the substorm expansive phase coincides well with the inner edge of the central plasma sheet. The analysis of interplanetary medium parameters shows that, on average, during the substorm development, the solar wind dynamic pressure was about 1.5 times that of the magnetic quietness period. Substorms occurred predominantly during the southward IMF orientation, suggesting that substorm onset often was not associated with the northern turn or decrease in the southward interplanetary Bz . The Northern Hemisphere's substorms occurred generally during the positive interplanetary By in winter, and they were observed when the interplanetary By was negative in summer

    Development of the HITRAP experimental facility

    Get PDF

    Closed orbit correction in CRYRING

    Get PDF

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis

    Get PDF
    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.Comment: Link to online abstract: http://link.aps.org/doi/10.1103/PhysRevLett.106.12250

    Direct mass measurements beyond the proton drip-line

    Get PDF
    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about 71087\cdot 10^{-8}, nine of them for the first time. Four nuclides (144,145^{144, 145}Ho and 147,148^{147, 148}Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation
    corecore