304 research outputs found
The Assembly of Matter in Galaxy Clusters
We study the merging history of dark matter haloes that end up in rich
clusters, using N-body simulations of a scale-free universe. We compare the
predictions of the extended Press & Schechter (PS) formalism (Bond et al. 1991;
Bower 1991; Lacey & Cole 1993) with several conditional statistics of the
proto-cluster matter: the mass distribution and relative abundance of
progenitor haloes at different redshifts, the infall rate of progenitors within
the proto-cluster, the formation redshift of the most massive cluster
progenitor, and the accretion rates of other haloes onto it. The high quality
of our simulations allows an unprecedented resolution in the mass range of the
studied distributions. We also present the global mass function for the same
cosmological model. We find that the PS formalism and its extensions cannot
simultaneously describe the global evolution of clustering and its evolution in
a proto-cluster environment. The best-fit PS model for the global mass function
is a poor fit to the statistics of cluster progenitors. This discrepancy is in
the sense of underpredicting the number of high-mass progenitors at high
redshift. Although the PS formalism can provide a good qualitative description
of the global evolution of hierarchical clustering, particular attention is
needed when applying the theory to the mass distribution of progenitor objects
at high redshift.Comment: 13 pages, Latex, 10 Postscript figures. Accepted for publication on
MNRAS. Postscript version also available at
http://www.mpa-garching.mpg.de/~bepi
Sunyaev-Zel'dovich profiles and scaling relations: modelling effects and observational biases
We use high-resolution hydrodynamic re-simulations to investigate the
properties of the thermal Sunyaev-Zel'dovich (SZ) effect from galaxy clusters.
We compare results obtained using different physical models for the
intracluster medium (ICM), and show how they modify the SZ emission in terms of
cluster profiles and scaling relations. We also produce realistic mock
observations to verify whether the results from hydrodynamic simulations can be
confirmed. We find that SZ profiles depend marginally on the modelled physical
processes, while they exhibit a strong dependence on cluster mass. The central
and total SZ emission strongly correlate with the cluster X-ray luminosity and
temperature. The logarithmic slopes of these scaling relations differ from the
self-similar predictions by less than 0.2; the normalization of the relations
is lower for simulations including radiative cooling. The observational test
suggests that SZ cluster profiles are unlikely to be able to probe the ICM
physics. The total SZ decrement appears to be an observable much more robust
than the central intensity, and we suggest using the former to investigate
scaling relations.Comment: 13 pages, 12 figures, accepted by MNRA
Velocity bias in a LCDM model
We use N-body simulations to study the velocity bias of dark matter halos,
the difference in the velocity fields of dark matter and halos, in a flat low-
density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution
allows dark matter halos to survive in very dense environments of groups and
clusters making it possible to use halos as galaxy tracers. We find that the
velocity bias pvb measured as a ratio of pairwise velocities of the halos to
that of the dark matter evolves with time and depends on scale. At high
redshifts (z ~5) halos move generally faster than the dark matter almost on all
scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets
below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that
the evolution of the pairwise velocity bias follows and probably is defined by
the spatial antibias of the dark matter halos at small scales. One-point
velocity bias b_v, defined as the ratio of the rms velocities of halos and dark
matter, provides a more direct measure of the difference in velocities because
it is less sensitive to the spatial bias. We analyze b_v in clusters of
galaxies and find that halos are ``hotter'' than the dark matter: b_v=(1.2-1.3)
for r=(0.2-0.8)r_vir, where r_vir is the virial radius. At larger radii, b_v
decreases and approaches unity at r=(1-2)r_vir. We argue that dynamical
friction may be responsible for this small positive velocity bias b_v>1 found
in the central parts of clusters. We do not find significant difference in the
velocity anisotropy of halos and the dark matter. The dark matter the velocity
anisotropy can be approximated as beta(x)=0.15 +2x/(x^2+4), where x is measured
in units of the virial radius.Comment: 13 pages, Latex, AASTeXv5 and natbi
The Mass Function and Average Mass Loss Rate of Dark Matter Subhaloes
We present a simple, semi-analytical model to compute the mass functions of
dark matter subhaloes. The masses of subhaloes at their time of accretion are
obtained from a standard merger tree. During the subsequent evolution, the
subhaloes experience mass loss due to the combined effect of dynamical
friction, tidal stripping, and tidal heating. Rather than integrating these
effects along individual subhalo orbits, we consider the average mass loss
rate, where the average is taken over all possible orbital configurations. This
allows us to write the average mass loss rate as a simple function that depends
only on redshift and on the instantaneous mass ratio of subhalo and parent
halo. After calibrating the model by matching the subhalo mass function (SHMF)
of cluster-sized dark matter haloes obtained from numerical simulations, we
investigate the predicted mass and redshift dependence of the SHMF.We find
that, contrary to previous claims, the subhalo mass function is not universal.
Instead, both the slope and the normalization depend on the ratio of the parent
halo mass, M, and the characteristic non-linear mass M*. This simply reflects a
halo formation time dependence; more massive parent haloes form later, thus
allowing less time for mass loss to operate. We analyze the halo-to-halo
scatter, and show that the subhalo mass fraction of individual haloes depends
most strongly on their accretion history in the last Gyr. Finally we provide a
simple fitting function for the average SHMF of a parent halo of any mass at
any redshift and for any cosmology, and briefly discuss several implications of
our findings.Comment: Replaced to match version accepted for publication in MNRAS. Small
section added that discusses higher-order moments of subhalo occupation
distribution (including a new figure). Otherwise, few small change
Scaling Evolution of Universal Dark-Matter Halo Density Profiles
Dark-matter halos show a universal density profile with a scaling such that
less massive systems are typically denser. This mass-density relation is well
described by a proportionality between the characteristic density of halos and
the mean cosmic density at halo formation time. It has recently been shown that
this proportionality could be the result of the following simple evolutionary
picture. Halos form in major mergers with essentially the same,
cosmogony-dependent, dimensionless profile, and then grow inside-outside, as a
consequence of accretion. Here we verify the consistency of this picture and
show that it predicts the correct zero point of the mass-density relation.Comment: 9 pages, 1 Table and 1 postscript figure, latex uses aaspp4.sty,
accepted for publication in The Astrophysical Journal Letter
The importance of the merging activity for the kinetic polarization of the Sunyaev-Zel'dovich signal from galaxy clusters
The polarization sensitivity of the upcoming millimetric observatories will
open new possibilities for studying the properties of galaxy clusters and for
using them as powerful cosmological probes. For this reason it is necessary to
investigate in detail the characteristics of the polarization signals produced
by their highly ionized intra-cluster medium (ICM). This work is focussed on
the polarization effect induced by the ICM bulk motions, the so-called kpSZ
signal, which has an amplitude proportional to the optical depth and to the
square of the tangential velocity. In particular we study how this polarization
signal is affected by the internal dynamics of galaxy clusters and what is its
dependence on the physical modelling adopted to describe the baryonic
component. This is done by producing realistic kpSZ maps starting from the
outputs of two different sets of high-resolution hydrodynamical N-body
simulations. The first set (17 objects) follows only non-radiative
hydrodynamics, while for each of 9 objects of the second set we implement four
different kinds of physical processes. Our results shows that the kpSZ signal
turns out to be a very sensitive probe of the dynamical status of galaxy
clusters. We find that major merger events can amplify the signal up to one
order of magnitude with respect to relaxed clusters, reaching amplitude up to
about 100 nuK. This result implies that the internal ICM dynamics must be taken
into account when evaluating this signal because simplicistic models, based on
spherical rigid bodies, may provide wrong estimates. Finally we find that the
dependence on the physical modelling of the baryonic component is relevant only
in the very inner regions of clusters.Comment: 13 pages, 7 figures, submitted to A&
Velocity Fields in Non--Gaussian Cold Dark Matter Models
We analyse the large--scale velocity field obtained by N--body simulations of
cold dark matter (CDM) models with non--Gaussian primordial density
fluctuations, considering models with both positive and negative primordial
skewness in the density fluctuation distribution. We study the velocity
probability distribution and calculate the dependence of the bulk flow,
one--point velocity dispersion and Cosmic Mach Number on the filtering size. We
find that the sign of the primordial skewness of the density field provides
poor discriminatory power on the evolved velocity field. All non--Gaussian
models here considered tend to have lower velocity dispersion and bulk flow
than the standard Gaussian CDM model, while the Cosmic Mach Number turns out to
be a poor statistic in characterizing the models. Next, we compare the
large--scale velocity field of a composite sample of optically selected
galaxies as described by the Local Group properties, bulk flow, velocity
correlation function and Cosmic Mach Number, with the velocity field of mock
catalogues extracted from the N--body simulations. The comparison does not
clearly permit to single out a best model: the standard Gaussian model is
however marginally preferred by the maximum likelihood analysis.Comment: 10 pages in Latex with mn.sty (available at the end of the paper
A reassessment of the evidence of the Integrated Sachs-Wolfe effect through the WMAP-NVSS correlation
We reassess the estimate of the cross-correlation of the spatial distribution
of the NRAO VLA Sky Survey (NVSS) radio sources with that of Cosmic Microwave
Background (CMB) anisotropies from the Wilkinson Microwave Anisotropy Probe
(WMAP). This re-analysis is motivated by the fact that most previous studies
adopted a redshift distribution of NVSS sources inconsistent with recent data.
We find that the constraints on the bias-weighted redshift distribution,
b(z)xN(z), of NVSS sources, set by the observed angular correlation function,
w(theta), strongly mitigate the effect of the choice of N(z). If such
constraints are met, even highly discrepant redshift distributions yield
NVSS-WMAP cross-correlation functions consistent with each other within
statistical errors. The models favoured by recent data imply a bias factor,
b(z), decreasing with increasing z, rather than constant, as assumed by most
previous analyses. As a consequence, the function b(z)xN(z) has more weight at
z<1, i.e. in the redshift range yielding the maximum contribution to the ISW in
a standard LambdaCDM cosmology. On the whole, the NVSS turns out to be better
suited for ISW studies than generally believed, even in the absence of an
observational determination of the redshift distribution. The NVSS-WMAP
cross-correlation function is found to be fully consistent with the prediction
of the standard LambdaCDM cosmology.Comment: 6 pages, 2 figures, submitted to MNRA
Density profiles and substructure of dark matter halos: converging results at ultra-high numerical resolution
Can N-body simulations reliably determine the structural properties of dark
matter halos? Focussing on a Virgo-sized galaxy cluster, we increase the
resolution of current ``high resolution simulations'' by almost an order of
magnitude to examine the convergence of the important physical quantities. We
have 4 million particles within the cluster and force resolution 0.5 kpc/h
(0.05% of the virial radius). The central density profile has a logarithmic
slope of -1.5, as found in lower resolution studies of the same halo,
indicating that the profile has converged to the ``physical'' limit down to
scales of a few kpc. Also the abundance of substructure is consistent with that
derived from lower resolution runs; on the scales explored, the mass and
circular velocity functions are close to power laws of exponents ~ -1.9 and -4.
Overmerging appears to be globally unimportant for suhalos with circular
velocities > 100 km/s. We can trace most of the cluster progenitors from z=3 to
the present; the central object (the dark matter analog of a cD galaxy)is
assembled between z=3 and 1 from the merging of a dozen halos with v_circ \sim
300 km/s. The mean circular velocity of the subhalos decreases by ~ 20% over 5
billion years, due to tidal mass loss. The velocity dispersions of halos and
dark matter globally agree within 10%, but the halos are spatially anti-biased,
and, in the very central region of the cluster, they show positive velocity
bias; however, this effect appears to depend on numerical resolution.Comment: 19 pages, 13 figures, ApJ, in press. Text significantly clarifie
The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates
Using a cosmological N-Body simulation and a sample of re-simulated
cluster-like haloes, we study the mass loss rates of dark matter subhaloes, and
interpret the mass function of subhaloes at redshift zero in terms of the
evolution of the mass function of systems accreted by the main halo progenitor.
When expressed in terms of the ratio between the mass of the subhalo at the
time of accretion and the present day host mass the unevolved subhalo mass
function is found to be universal. However, the subhalo mass function at
redshift zero clearly depends on , in that more massive host haloes host
more subhaloes. To relate the unevolved and evolved subhalo mass functions, we
measure the subhalo mass loss rate as a function of host mass and redshift. We
find that the average, specific mass loss rate of dark matter subhaloes depends
mainly on redshift. These results suggest a pleasingly simple picture for the
evolution and mass dependence of the evolved subhalo mass function. Less
massive host haloes accrete their subhaloes earlier, which are thus subjected
to mass loss for a longer time. In addition, their subhaloes are typically
accreted by denser hosts, which causes an additional boost of the mass loss
rate. To test the self-consistency of this picture, we use a merger trees
constructed using the extended Press-Schechter formalism, and evolve the
subhalo populations using the average mass loss rates obtained from our
simulations, finding the subhalo mass functions to be in good agreement with
the simulations. [abridged]Comment: 12 pages, 12 figures; submitted to MNRA
- …