3,913 research outputs found
The Many Electron Ground State of the Adiabatic Holstein Model in Two and Three Dimensions
We present the complete ground state phase diagram of the Holstein model in
two and three dimension considering the phonon variables to be classical. We
first establish the overall structure of the phase diagram by using exact
diagonalisation based Monte Carlo (ED-MC) on small lattices and then use a new
``travelling cluster'' approximation (TCA) for annealing the phonon degrees of
freedom on large lattices. The phases that emerge include a Fermi liquid (FL),
with no lattice distortions, an insulating polaron liquid (PL) at strong
coupling, and a charge ordered insulating (COI) phase around half- filling. The
COI phase is separated from the Fermi liquid by a regime of phase coexistence
whose width grows with increasing electron-phonon coupling. We provide results
on the electronic density of states, the COI order parameter, and the spatial
organisation of polaronic states, for arbitrary density and electron-phonon
coupling. The results highlight the crucial role of spatial correlations in
this strong coupling problem.Comment: Final versio
Spectrum Sensing Techniques For Cognitive Radio Applications
Cognitive Radio (CR) has received tremendous research attention over the past decade, both in the academia and industry, as it is envisioned as a promising solution to the problem of spectrum scarcity. ACR is a device that senses the spectrum for occupancy by licensed users(also called as primary users), and transmits its data only when the spectrum is sensed to be available. For the efficient utilization of the spectrum while also guaranteeing adequate protection to the licensed user from harmful interference, the CR should be able to sense the spectrum for primary occupancy quickly as well as accurately. This makes Spectrum Sensing(SS) one of the where the goal is to test whether the primary user is inactive(the null or noise-only hypothesis), or not (the alternate or signal-present hypothesis). Computational simplicity, robustness to uncertainties in the knowledge of various noise, signal, and fading parameters, and ability to handle interference or other source of non-Gaussian noise are some of the desirable features of a SS unit in a CR.
In many practical applications, CR devices can exploit known structure in the primary signal. IntheIEEE802.22CR standard, the primary signal is a wideband signal, but with a strong narrowband pilot component. In other applications, such as military communications, and blue tooth, the primary signal uses a Frequency Hopping (FH)transmission. These applications can significantly benefit from detection schemes that are tailored for detecting the corresponding primary signals. This thesis develops novel detection schemes and rigorous performance analysis of these primary signals in the presence of fading. For example, in the case of wideband primary signals with a strong narrowband pilot, this thesis answers the further question of whether to use the entire wideband for signal detection, or whether to filter out the pilot signal and use narrowband signal detection. The question is interesting because the fading characteristics of wideband and narrowband signals are fundamentally different. Due to this, it is not obvious which detection scheme will perform better in practical fading environments.
At another end of the gamut of SS algorithms, when the CR has no knowledge of the structure or statistics of the primary signal, and when the noise variance is known, Energy Detection (ED) is known to be optimal for SS. However, the performance of the ED is not robust to uncertainties in the noise statistics or under different possible primary signal models. In this case, a natural way to pose the SS problem is as a Goodness-of-Fit Test (GoFT), where the idea is to either accept or reject the noise-only hypothesis. This thesis designs and studies the performance of GoFTs when the noise statistics can even be non-Gaussian, and with heavy tails. Also, the techniques are extended to the cooperative SS scenario where multiple CR nodes record observations using multiple antennas and perform decentralized detection.
In this thesis, we study all the issues listed above by considering both single and multiple CR nodes, and evaluating their performance in terms of(a)probability of detection error,(b) sensing-throughput trade off, and(c)probability of rejecting the null-hypothesis. We propose various SS strategies, compare their performance against existing techniques, and discuss their relative advantages and performance tradeoffs. The main contributions of this thesis are as follows:
The question of whether to use pilot-based narrowband sensing or wideband sensing is answered using a novel, analytically tractable metric proposed in this thesis called the error exponent with a confidence level.
Under a Bayesian framework, obtaining closed form expressions for the optimal detection threshold is difficult. Near-optimal detection thresholds are obtained for most of the commonly encountered fading models.
Foran FH primary, using the Fast Fourier Transform (FFT) Averaging Ratio(FAR) algorithm, the sensing-through put trade off are derived in closed form.
A GoFT technique based on the statistics of the number of zero-crossings in the observations is proposed, which is robust to uncertainties in the noise statistics, and outperforms existing GoFT-based SS techniques.
A multi-dimensional GoFT based on stochastic distances is studied, which pro¬vides better performance compared to some of the existing techniques. A special case, i.e., a test based on the Kullback-Leibler distance is shown to be robust to some uncertainties in the noise process.
All of the theoretical results are validated using Monte Carlo simulations. In the case of FH-SS, an implementation of SS using the FAR algorithm on a commercially off-the ¬shelf platform is presented, and the performance recorded using the hardware is shown to corroborate well with the theoretical and simulation-based results. The results in this thesis thus provide a bouquet of SS algorithms that could be useful under different CRSS scenarios
Einstein static universes are unstable in generic f(R) models
We study Einstein static universes in the context of generic f(R) models. It
is shown that Einstein static solutions exist for a wide variety of modified
gravity models sourced by a barotropic perfect fluid with equation of state
w=p/rho, but these solutions are always unstable to either homogeneous or
inhomogeneous perturbations. Our general results are in agreement with specific
models investigated in that past. We also discuss how our techniques can be
applied to other scenarios in f(R) gravity.Comment: 7 pages, 2 figures. Minor corrections. Minor changes and references
added to match version accepted by Phys. Rev.
Impact of ATM Service on Customer Perception and Satisfaction of Indian Banks
. Indian banking sector has completely changed. It has undergone much technological advancement that makes banking easy. Technological advancements are important but at the end what build customer satisfaction is proper management, employee behavior and customer relationship handling. Customer satisfaction is a sum of many variables that is many factors together leads to customer satisfaction. This modern electronic banking has completely changed the concept and functioning of banking system in India. Indian banking has moved from cash economy to cheque to and finally to the use of plastic cards. The customer satisfaction is dependent on customer awareness to a lot of extent. An unaware customer has less knowledge and therefore they cannot use the facilities completely even if they have it at their disposal. Customers prefer public sector banks when they are looking for trust and security and reliability. When it comes to speed, advancements and up gradation people shits from public sector banks to private sector banks. Customer gets satisfied only when they get quality service from the brand they are dealing with. This is very important for the marketers or the service providers as this leads to consumer satisfaction which benefits them and this brings loyalty to the brand enhancing the brand positioning. This research is important because new modern era has made people technology savvy they start their day with technology and end with technology therefore it is important to see the perception of users towards various factors of ATM. This research is conducted to see the highlighting factors that have direct impact on ATM services
Tumors in von Hippel–Lindau Syndrome: From Head to Toe—Comprehensive State-of-the-Art Review
Von Hippel–Lindau syndrome (VHL) is an autosomal-dominant hereditary tumor disease that arises owing to germline mutations in the VHL gene, located on the short arm of chromosome 3. Patients with VHL may develop multiple benign and malignant tumors involving various organ systems, including retinal hemangioblastomas (HBs), central nervous system (CNS) HBs, endolymphatic sac tumors, pancreatic neuroendocrine tumors, pancreatic cystadenomas, pancreatic cysts, clear cell renal cell carcinomas, renal cysts, pheochromocytomas, paragangliomas, and epididymal and broad ligament cystadenomas. The VHL/hypoxia-inducible factor pathway is believed to play a key role in the pathogenesis of VHL-related tumors. The diagnosis of VHL can be made clinically when the characteristic clinical history and findings have manifested, such as the presence of two or more CNS HBs. Genetic testing for heterozygous germline VHL mutation may also be used to confirm the diagnosis of VHL. Imaging plays an important role in the diagnosis and surveillance of patients with VHL. Familiarity with the clinical and imaging manifestations of the various VHL-related tumors is important for early detection and guiding appropriate management. The purpose of this article is to discuss the molecular cytogenetics and clinical manifestations of VHL, review the characteristic multimodality imaging features of the various VHL-related tumors affecting multiple organ systems, and discuss the latest advances in management of VHL, including current recommendations for surveillance and screening
Theoretical prediction of multiferroicity in double perovskite YNiMnO
We put forward double perovskites of the RNiMnO family (with a
rare-earth atom) as a new class of multiferroics on the basis of {\it ab
initio} density functional calculations. We show that changing from La to Y
drives the ground-state from ferromagnetic to antiferromagnetic with
spin patterns. This E-type ordering
breaks inversion symmetry and generates a ferroelectric polarization of few
. By analyzing a model Hamiltonian we understand the microscopic
origin of this transition and show that an external electric field can be used
to tune the transition, thus allowing electrical control of the magnetization.Comment: 4 pages, 3 figure
Background independent quantization and wave propagation
We apply a type of background independent "polymer" quantization to a free
scalar field in a flat spacetime. Using semi-classical states, we find an
effective wave equation that is both nonlinear and Lorentz invariance
violating. We solve this equation perturbatively for several cases of physical
interest, and show that polymer corrections to solutions of the Klein-Gordon
equation depend on the amplitude of the field. This leads to an effective
dispersion relation that depends on the amplitude, frequency and shape of the
wave-packet, and is hence distinct from other modified dispersion relations
found in the literature. We also demonstrate that polymer effects tend to
accumulate with time for plane-symmetric waveforms. We conclude by discussing
the possibility of measuring deviations from the Klein-Gordon equation in
particle accelerators or astrophysical observations.Comment: 15 pages, minor revision to match PRD versio
- …