4,322 research outputs found

    Entanglement oscillations in non-Markovian quantum channels

    Get PDF
    We study the non-Markovian dynamics of a two-mode bosonic system interacting with two uncorrelated thermal bosonic reservoirs. We present the solution to the exact microscopic Master equation in terms of the quantum characteristic function and study in details the dynamics of entanglement for bipartite Gaussian states. In particular, we analyze the effects of short-time system-reservoir correlations on the separability thresholds and show that the relevant parameter is the reservoir spectral density. If the frequencies of the involved modes are within the reservoir spectral density entanglement persists for a longer time than in a Markovian channel. On the other hand, when the reservoir spectrum is out of resonance short-time correlations lead to a faster decoherence and to the appearance of entanglement oscillations.Comment: 5 pages, 2 figures, published versio

    Evaluating Cartogram Effectiveness

    Full text link
    Cartograms are maps in which areas of geographic regions (countries, states) appear in proportion to some variable of interest (population, income). Cartograms are popular visualizations for geo-referenced data that have been used for over a century and that make it possible to gain insight into patterns and trends in the world around us. Despite the popularity of cartograms and the large number of cartogram types, there are few studies evaluating the effectiveness of cartograms in conveying information. Based on a recent task taxonomy for cartograms, we evaluate four major different types of cartograms: contiguous, non-contiguous, rectangular, and Dorling cartograms. Specifically, we evaluate the effectiveness of these cartograms by quantitative performance analysis, as well as by subjective preferences. We analyze the results of our study in the context of some prevailing assumptions in the literature of cartography and cognitive science. Finally, we make recommendations for the use of different types of cartograms for different tasks and settings

    Bayesian model averaging over tree-based dependence structures for multivariate extremes

    Full text link
    Describing the complex dependence structure of extreme phenomena is particularly challenging. To tackle this issue we develop a novel statistical algorithm that describes extremal dependence taking advantage of the inherent hierarchical dependence structure of the max-stable nested logistic distribution and that identifies possible clusters of extreme variables using reversible jump Markov chain Monte Carlo techniques. Parsimonious representations are achieved when clusters of extreme variables are found to be completely independent. Moreover, we significantly decrease the computational complexity of full likelihood inference by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through extensive simulation experiments which also compare different likelihood procedures. The new methodology is used to investigate the dependence relationships between extreme concentration of multiple pollutants in California and how these pollutants are related to extreme weather conditions. Overall, we show that our approach allows for the representation of complex extremal dependence structures and has valid applications in multivariate data analysis, such as air pollution monitoring, where it can guide policymaking

    Continuous-variable quantum key distribution in non-Markovian channels

    Get PDF
    We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1 ->2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD

    Dynamical paths and universality in continuous variables open systems

    Get PDF
    We address the dynamics of quantum correlations in continuous variable open systems and analyze the evolution of bipartite Gaussian states in independent noisy channels. In particular, upon introducing the notion of dynamical path through a suitable parametrization for symmetric states, we focus attention on phenomena that are common to Markovian and non-Markovian Gaussian maps under the assumptions of weak coupling and secular approximation. We found that the dynamical paths in the parameter space are universal, that is they do depend only on the initial state and on the effective temperature of the environment, with non Markovianity that manifests itself in the velocity of running over a given path. This phenomenon allows one to map non-Markovian processes onto Markovian ones and it may reduce the number of parameters needed to study a dynamical process, e.g. it may be exploited to build constants of motions valid for both Markovian and non-Markovian maps. Universality is also observed in the value of Gaussian discord at the separability threshold, which itself is a function of the sole initial conditions in the limit of high temperature. We also prove the existence of excluded regions in the parameter space, i.e. of sets of states which cannot be linked by any Gaussian dynamical map.Comment: 7 pages, 2 figures, improved pictures and forma

    Dynamical decoupling efficiency versus quantum non-Markovianity

    Get PDF
    We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investigate the connection between dynamical decoupling efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.Comment: 6 pages, 4 figure
    • …
    corecore