1,386 research outputs found
Hydrodynamical Modeling of a Multiple‐Inlet Estuary/Barrier System: Insight Into Tidal Inlet Formation and Stability
Two specific questions are addressed concerning the role of tidal hydrodynamics in determining the long‐term morphologic evolution of the Nauset Beach‐Monomoy Island barrier system and the Chatham Harbor‐Pleasant Bay tidal estuary, Massachusetts: (1) why do the barrier and estuary exhibit a long‐term (∼150 yr) cycle of new inlet formation, and (2) once a new inlet forms, why is the resulting multiple inlet system unstable? To address these questions, a branched 1‐d numerical model is used to recreate the basic flow patterns in the tidal estuary at ten‐year intervals during the last half century and also to recreate flow conditions shortly before and shortly after the formation of the new inlet. Results suggest that an inlet will form through Nauset Beach once southerly elongation of the barrier has led to a critical head across the barrier at high tide. If this critical head (enhanced by storm surge and wave set‐up) exists at high tide during consecutive tidal cycles, flood currents can deepen the overwash channel sufficiently to enable the stronger ebb currents to complete the formation process. Once a new inlet has formed, the surface gradient and tidal discharge are drastically reduced along the pre‐existing channel to the south of the inlet. This reduction eliminates the tidal scouring action needed to keep the channel open. Rapid shoaling within the channel to the south of the new inlet completes the hydrodynamic decoupling of the northern and southern sections of the estuary.https://scholarworks.wm.edu/vimsbooks/1037/thumbnail.jp
Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide
The decay rate \gam of an excited dipole molecule inside a waveguide is
evaluated for the strongly coupled matter-field case near a cutoff frequency
\ome_c without using perturbation analysis. Due to the singularity in the
density of photon states at the cutoff frequency, we find that \gam depends
non-analytically on the coupling constant as . In contrast
to the ordinary evaluation of \gam which relies on the Fermi golden rule
(itself based on perturbation analysis), \gam has an upper bound and does not
diverge at \ome_c even if we assume perfect conductance in the waveguide
walls. As a result, again in contrast to the statement found in the literature,
the speed of emitted light from the molecule does not vanish at \ome_c and is
proportional to which is on the order of m/s for
typical dipole molecules.Comment: 4 pages, 2 figure
On hybrid states of two and three level atoms
We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting
two photons and choosing a particular coupling function. We also present a
rough description of the set of resonances in a model for a three-level atom
coupled to the photon field. We give a general picture of matter-field
resonances these results fit into.Comment: 33 pages, 12 figure
Increased nitrogen export from eastern North America to the Atlantic Ocean due to climatic and anthropogenic changes during 1901-2008
We used a process-based land model, Dynamic Land Ecosystem Model 2.0, to examine how climatic and anthropogenic changes affected riverine fluxes of ammonium (NH4+), nitrate (NO3-), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) from eastern North America, especially the drainage areas of the Gulf of Maine (GOM), Mid-Atlantic Bight (MAB), and South Atlantic Bight (SAB) during 1901-2008. Model simulations indicated that annual fluxes of NH4+, NO3-, DON, and PON from the study area during 1980-2008 were 0.0190.003 (mean1 standard deviation) TgNyr(-1), 0.180.035TgNyr(-1), 0.100.016TgNyr(-1), and 0.043 +/- 0.008TgNyr(-1), respectively. NH4+, NO3-, and DON exports increased while PON export decreased from 1901 to 2008. Nitrogen export demonstrated substantial spatial variability across the study area. Increased NH4+ export mainly occurred around major cities in the MAB. NO3- export increased in most parts of the MAB but decreased in parts of the GOM. Enhanced DON export was mainly distributed in the GOM and the SAB. PON export increased in coastal areas of the SAB and northern parts of the GOM but decreased in the Piedmont areas and the eastern parts of the MAB. Climate was the primary reason for interannual variability in nitrogen export; fertilizer use and nitrogen deposition tended to enhance the export of all nitrogen species; livestock farming and sewage discharge were also responsible for the increases in NH4+ and NO3- fluxes; and land cover change (especially reforestation of former agricultural land) reduced the export of the four nitrogen species
Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin
Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf
Existence of families of spacetimes with a Newtonian limit
J\"urgen Ehlers developed \emph{frame theory} to better understand the
relationship between general relativity and Newtonian gravity. Frame theory
contains a parameter , which can be thought of as , where
is the speed of light. By construction, frame theory is equivalent to general
relativity for , and reduces to Newtonian gravity for .
Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to
study the Newtonian limit \ep \searrow 0 (i.e. ). A number of
ideas relating to frame theory that were introduced by J\"urgen have
subsequently found important applications to the rigorous study of both the
Newtonian limit and post-Newtonian expansions. In this article, we review frame
theory and discuss, in a non-technical fashion, some of the rigorous results on
the Newtonian limit and post-Newtonian expansions that have followed from
J\"urgen's work
Korn's second inequality and geometric rigidity with mixed growth conditions
Geometric rigidity states that a gradient field which is -close to the
set of proper rotations is necessarily -close to a fixed rotation, and is
one key estimate in nonlinear elasticity. In several applications, as for
example in the theory of plasticity, energy densities with mixed growth appear.
We show here that geometric rigidity holds also in and in
interpolation spaces. As a first step we prove the corresponding linear
inequality, which generalizes Korn's inequality to these spaces
Well-Posed Initial-Boundary Evolution in General Relativity
Maximally dissipative boundary conditions are applied to the initial-boundary
value problem for Einstein's equations in harmonic coordinates to show that it
is well-posed for homogeneous boundary data and for boundary data that is small
in a linearized sense. The method is implemented as a nonlinear evolution code
which satisfies convergence tests in the nonlinear regime and is robustly
stable in the weak field regime. A linearized version has been stably matched
to a characteristic code to compute the gravitational waveform radiated to
infinity.Comment: 5 pages, 6 figures; added another convergence plot to Fig. 2 + minor
change
Symmetric hyperbolic system in the Ashtekar formulation
We present a first-order symmetric hyperbolic system in the Ashtekar
formulation of general relativity for vacuum spacetime. We add terms from
constraint equations to the evolution equations with appropriate combinations,
which is the same technique used by Iriondo, Leguizam\'on and Reula [Phys. Rev.
Lett. 79, 4732 (1997)]. However our system is different from theirs in the
points that we primarily use Hermiticity of a characteristic matrix of the
system to characterize our system "symmetric", discuss the consistency of this
system with reality condition, and show the characteristic speeds of the
system.Comment: 4 pages, RevTeX, to appear in Phys. Rev. Lett., Comments added, refs
update
The Newtonian Limit for Asymptotically Flat Solutions of the Vlasov-Einstein System
It is shown that there exist families of asymptotically flat solutions of the
Einstein equations coupled to the Vlasov equation describing a collisionless
gas which have a Newtonian limit. These are sufficiently general to confirm
that for this matter model as many families of this type exist as would be
expected on the basis of physical intuition. A central role in the proof is
played by energy estimates in unweighted Sobolev spaces for a wave equation
satisfied by the second fundamental form of a maximal foliation.Comment: 24 pages, plain TE
- …