292 research outputs found

    Synthesis of 1,8-naphthalimide-based probes with fluorescent switch triggered by flufenamic acid

    Get PDF
    This work was supported by the European Commission Marie Curie IEF NANOGEND (ga 299266) to DV and the European Commission Marie Curie ITN NANODRUG (ga 289454) to GS

    THE ROLE OF THE HYPOXIA INDUCIBLE FACTOR (HIF-1Α) IN MYOGENESIS

    Get PDF
    Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, the satellite cells, which are resident in hypoxic niches in the tissue. This process is mainly regulated through a group of transcription factors known as the hypoxia-inducible factors (HIFs). In particular, HIF-1\u3b1 activation has been described as beneficial for the cell to overcome an hypoxic insult, while it has been observed that its chronic activation completely inhibits skeletal muscle differentiation. Therefore, oxygen deprivation and HIF-1\u3b1 may play a role in activating the initial steps of the regeneration process. Herein, we investigated whether a 24h pre-conditioning under physical (1% O2) or chemical (IOX2 and FG-4592, two commercial PHDs inhibitors) hypoxic culture conditions could alter the differentiation of C2C12 myoblasts. In this thesis work we report that a controlled stimulus can trigger HIF-1\u3b1, activating MyoD through the non-canonical Wnt/\u3b2-catenin pathway and resulting in muscle hypertrophy. In particular, results show that both an hypoxic and a chemical pre-conditioning promotes the increase of all differentiation markers and the up-regulation of the non-canonical WNT pathway involved in myogenesis. Moreover, HIF-1\u3b1 silencing significantly reduced cell differentiation, down-regulating MyoD and MHC as well as the expression of WNT7a. Finally, we studied the mechanism of WNT7a activation mediated by HIF-1\u3b1. Our results showed that HIF-1\u3b1 activation induced an enhancement of WNT7a promoter activity, therefore we focused on the identification of the HIF-1\u3b1 binding sequences localized on WNT7a promoter. Two different regions of over-lapping were identified by ChIP experiments, validating that HIF-1\u3b1 directly binds WNT7a promoter and regulates its gene expression. In conclusion, we demonstrated the crucial role played by HIF-1\u3b1 during skeletal muscle differentiation, and our results revealed that PHDs inhibitors could be used to mimic the effects obtained under hypoxic conditions. In addition, we define HIF-1\u3b1 as a new possible candidate to induce the activation of WNT7a, which characterized the hypertrophic phenotype of the skeletal muscle. Altogether these results support the notion that HIF-1\u3b1 plays a pivotal role in activating the regeneration process and may suggest new perspective for novel therapeutic targets in the treatment of several muscle diseases

    NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients

    Get PDF
    Background Hypoxia is a common feature of many congenital heart defects (CHDs) and significantly contributes to their pathophysiology. Thus, understanding the mechanism underlying cell response to hypoxia is vital for the development of novel therapeutic strategies. Certainly, the hypoxia inducible factor (HIF) has been extensively investigated and it is now recognized as the master regulator of cell defense machinery counteracting hypoxic stress. Along this line, we recently discovered and reported a novel mechanism of HIF activation, which is mediated by sialidase NEU3. Thus, aim of this study was to test whether NEU3 played any role in the cardiac cell response to chronic hypoxia in congenital cyanotic patients. Methods Right atrial appendage biopsies were obtained from pediatric patients with cyanotic/non-cyanotic CHDs and processed to obtain mRNA and proteins. Real-Time PCR and Western Blot were performed to analyze HIF-1\uce\ub1 and its downstream targets expression, NEU3 expression, and the NEU3 mediated effects on the EGFR signaling cascade. Results Cyanotic patients showed increased levels of HIF-1\uce\ub1, NEU3, EGFR and their downstream targets, as compared to acyanotic controls. The same patients were also characterized by increased phosphorylation of the EGFR signaling cascade proteins. Moreover, we found that HIF-1\uce\ub1 expression levels positively correlated with those recorded for NEU3 in both cyanotic and control patients. Conclusions Sialidase NEU3 plays a central role in activating cell response to chronic hypoxia inducing the up-regulation of HIF-1\uce\ub1, and this represent a possible novel tool to treat several CHD pathologies

    Neuroendocrine tumors presenting with thyroid gland metastasis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Autopsy series have shown that metastasis to the thyroid gland has occurred in up to 24% of patients who have died of cancer. Neuroendocrine tumors may metastasize to thyroid gland.</p> <p>Case presentations</p> <p>Case 1 was a 17-year-old Turkish woman who was referred from our Endocrinology Department for a thyroidectomy for treatment of neuroendocrine tumor metastasis. She was treated with a bilateral total thyroidectomy. Histopathological examination results were consistent with a neuroendocrine tumor; neoplastic cells showed strong immunoreactivity to chromogranin A and synaptophysin, but the immunohistochemical profile was inconsistent with medullary thyroid carcinoma in that the tumor was negative for calcitonin, carcinoembryonic antigen, and thyroid transcription factor-1.</p> <p>Case 2 was a 54-year-old Turkish woman who presented with a 3-cm nodule on her right thyroid lobe. She had undergone surgery for a right lung mass four years previously. After a right pneumonectomy, thymectomy and lymph node dissection, a typical carcinoid tumor was diagnosed. Under ultrasonographic guidance, fine needle aspiration biopsy of her right thyroid pole nodule was performed and the biopsy was compatible with a neuroendocrine tumor metastasis. She was treated with a bilateral total thyroidectomy. Histopathological examination indicated three nodular lesions, 5 cm and 0.4 cm in diameter in her right lobe and 0.1 cm in diameter in her left lobe. The tumors were consistent with a neuroendocrine phenotype, showing strong immunoreactivity to chromogranin A and synaptophysin.</p> <p>Conclusion</p> <p>Thyroid nodules detected during follow-up of neuroendocrine tumor patients should be thoroughly investigated. A fine needle aspiration biopsy of the thyroid confirms the diagnosis in most cases and leads to appropriate management of those patients and may prevent unnecessary treatment approaches.</p

    Efficacy of weekly teriparatide does not vary by baseline fracture probability calculated using FRAX

    Get PDF
    Summary The aim of this study was to determine the efficacy of once-weekly teriparatide as a function of baseline fracture risk. Treatment with once-weekly teriparatide was associated with a statistically significant 79 % decrease in vertebral fractures, and in the cohort as a whole, efficacy was not related to baseline fracture risk. Introduction Previous studies have suggested that the efficacy of some interventions may be greater in the segment of the population at highest fracture risk as assessed by the FRAX® algorithms. The aim of the present study was to determine whether the antifracture efficacy of weekly teriparatide was dependent on the magnitude of fracture risk. Methods Baseline fracture probabilities (using FRAX) were computed from the primary data of a phase 3 study (TOWER) of the effects of weekly teriparatide in 542 men and postmenopausal women with osteoporosis. The outcome variable comprised morphometric vertebral fractures. Interactions between fracture probability and efficacy were explored by Poisson regression. Results The 10-year probability of major osteoporotic fractures (without BMD) ranged from 7.2 to 42.2 %. FRAX-based hip fracture probabilities ranged from 0.9 to 29.3 %. Treatment with teriparatide was associated with a 79 % (95 % CI 52–91 %) decrease in vertebral fractures assessed by semiquantitative morphometry. Relative risk reductions for the effect of teriparatide on the fracture outcome did not change significantly across the range of fracture probabilities (p = 0.28). In a subgroup analysis of 346 (64 %) participants who had FRAX probabilities calculated with the inclusion of BMD, there was a small but significant interaction (p = 0.028) between efficacy and baseline fracture probability such that high fracture probabilities were associated with lower efficacy. Conclusion Weekly teriparatide significantly decreased the risk of morphometric vertebral fractures in men and postmenopausal women with osteoporosis. Overall, the efficacy of teriparatide was not dependent on the level of fracture risk assessed by FRAX in the cohort as a whole

    Meta-Analysis on the Effects of Octreotide on Tumor Mass in Acromegaly

    Get PDF
    <div><h3>Background</h3><p>The long-acting somatostatin analogue octreotide is used either as an adjuvant or primary therapy to lower growth hormone (GH) levels in patients with acromegaly and may also induce pituitary tumor shrinkage.</p> <h3>Objective</h3><p>We performed a meta-analysis to accurately assess the effect of octreotide on pituitary tumor shrinkage.</p> <h3>Data Sources</h3><p>A computerized Medline and Embase search was undertaken to identify potentially eligible studies.</p> <h3>Study Eligibility Criteria</h3><p>Eligibility criteria included treatment with octreotide, availability of numerical metrics on tumor shrinkage and clear definition of a clinically relevant reduction in tumor size. Primary endpoints included the proportion of patients with tumor shrinkage and mean percentage reduction in tumor volume.</p> <h3>Data Extraction and Analysis</h3><p>The electronic search identified 2202 articles. Of these, 41 studies fulfilling the eligibility criteria were selected for data extraction and analysis. In total, 1685 patients were included, ranging from 6 to 189 patients per trial. For the analysis of the effect of octreotide on pituitary tumor shrinkage a random effect model was used to account for differences in both effect size and sampling error.</p> <h3>Results</h3><p>Octreotide was shown to induce tumor shrinkage in 53.0% [95% CI: 45.0%–61.0%] of treated patients. In patients treated with the LAR formulation of octreotide, this increased to 66.0%, [95% CI: 57.0%–74.0%). In the nine studies in which tumor shrinkage was quantified, the overall weighted mean percentage reduction in tumor size was 37.4% [95% CI: 22.4%–52.4%], rising to 50.6% [95% CI: 42.7%–58.4%] with octreotide LAR.</p> <h3>Limitations</h3><p>Most trials examined were open-label and had no control group.</p> <h3>Conclusions</h3><p>Octreotide LAR induces clinically relevant tumor shrinkage in more than half of patients with acromegaly.</p> </div

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans
    • …
    corecore