358 research outputs found
Zero-Emission Vessels 2030: How do we get there?
Fossil fuels provide society in general,
as well as shipping, with a high-density
and low-cost energy source that is
comparatively easy to store, handle
and transport. We have had decades to
optimise the design, maintenance and
operation of the shipping system to suit
the fossil âparadigmâ. But the world is
changing. It is, therefore, unsurprising
that when looking for a non-fossil,
zero-emission and sustainable energy
source, as we must urgently now do, itâs
difficult to see an obvious âsilver bulletâ
Cannabidiol treatment for refractory epilepsies in pediatrics
Cannabis extracts in oil are becoming increasingly available, and, during the last years, there has been growing public and scientific interest about therapeutic properties of these compounds for the treatment of several neurologic diseases, not just epilepsy. The discovered role of the endocannabinoid system in epileptogenesis has provided the basis to investigate the pharmacological use of exogenously produced cannabinoids, to treat epilepsy. Although, physicians show reluctance to recommend Cannabis extracts given the lack of high-quality safety available data, from literature data cannabidiol (CBD) results to be a promising and safe anticonvulsant drug with low side-effect. In particular, according to early studies, CBD can reduce the frequency of seizures and lead to improvements in quality of life in children affected by refractory epilepsy. So, for these reasons, the detailed study of the interactions between CBD and anticonvulsant drugs (AEDs) administered simultaneously in polytherapy, is arousing increasing interest, to clarify and to assess the incidence of adverse effects and the relation between dose escalation and quality of life measures. To date, in pediatric age, CBD efficacy and safety is not supported by well-designed trials and strong scientific evidence are not available. These studies are either retrospective or small-scale observational and only during the last years Class I evidence data for a pure form of CBD have been available, as demonstrated in placebo-controlled RCTs for patients affected by Lennox-Gastaut syndrome and Dravet syndrome. It is necessary to investigate CBD safety, pharmacokinetics and interaction with other AEDs alongside performing double-blinded placebo-controlled trials to obtain conclusive data on its efficacy and safety in the most frequent epilepsies in children, not just in the epileptic encephalopathy. This review was aimed to revise the available data to describe the scientific evidence for CBD in Pediatric Epilepsies
Lifestyle Modifications to Help Prevent Headache at a Developmental Age
Headache is the world's seventh most significant cause of disability-adjusted-life in people aged between 10 and 14 years. Therapeutic management is based on pharmacological approaches and lifestyle recommendations. Many studies show associations between each migraine-promoting lifestyle, behavioral triggers, frequency, and intensity of headaches. Nevertheless, the overall aspects of this topic lack any definitive evidence. Educational programs advise that pediatric patients who suffer from migraines follow a correct lifestyle and that this is of the utmost importance in childhood, as it will improve quality of life and assist adult patients in avoiding headache chronicity, increasing general well-being. These data are important due to the scarcity of scientific evidence on drug therapy for prophylaxis during the developmental age. The "lifestyle recommendations" described in the literature include a perfect balance between regular sleep and meal, adequate hydration, limited consumption of caffeine, tobacco, and alcohol, regular physical activity to avoid being overweight as well as any other elements causing stress. The ketogenic diet is a possible new therapeutic strategy for the control of headache in adults, however, the possible role of dietary factors requires more specific studies among children and adolescents. Educational programs advise that the improvement of lifestyle as a central element in the management of pediatric headache will be of particular importance in the future to improve the quality of life of these patients and reduce the severity of cephalalgic episodes and increase their well-being in adulthood. The present review highlights how changes in different aspects of daily life may determine significant improvements in the management of headaches in people of developmental age
miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase).
Objective- Vascular calcification (VC) is age dependent and a risk factor for cardiovascular and all-cause mortality. VC involves the senescence-induced transdifferentiation of vascular smooth muscle cells (SMCs) toward an osteochondrogenic lineage resulting in arterial wall mineralization. miR-34a increases with age in aortas and induces vascular SMC senescence through the modulation of its target SIRT1 (sirtuin 1). In this study, we aimed to investigate whether miR-34a regulates VC. Approach and Results- We found that miR-34a and Runx2 (Runt-related transcription factor 2) expression correlates in young and old mice. Mir34a <sup>+/+</sup> and Mir34a <sup>-/-</sup> mice were treated with vitamin D, and calcium quantification revealed that Mir34a deficiency reduces soft tissue and aorta medial calcification and the upregulation of the VC Sox9 (SRY [sex-determining region Y]-box 9) and Runx2 and the senescence p16 and p21 markers. In this model, miR-34a upregulation was transient and preceded aorta mineralization. Mir34a <sup>-/-</sup> SMCs were less prone to undergo senescence and under osteogenic conditions deposited less calcium compared with Mir34a <sup>+/+</sup> cells. Furthermore, unlike in Mir34a <sup>+/+</sup> SMC, the known VC inhibitors SIRT1 and Axl (AXL receptor tyrosine kinase) were only partially downregulated in calcifying Mir34a <sup>-/-</sup> SMC. Strikingly, constitutive miR-34a overexpression to senescence-like levels in human aortic SMCs increased calcium deposition and enhanced Axl and SIRT1 decrease during calcification. Notably, we also showed that miR-34a directly decreased Axl expression in human aortic SMC, and restoration of its levels partially rescued miR-34a-dependent growth arrest. Conclusions- miR-34a promotes VC via vascular SMC mineralization by inhibiting cell proliferation and inducing senescence through direct Axl and SIRT1 downregulation, respectively. This miRNA could be a good therapeutic target for the treatment of VC
Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells.
Doxorubicin (DOXO) treatment is limited by its cardiotoxicity, since it causes cardiac-progenitor-cell depletion. Although the cardioprotective role of the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF1/CXCR4) axis is well established, its involvement during DOXO-induced cardiotoxicity has never been investigated. We showed that in a mouse model of DOXO-induced cardiomyopathy, CXCR4 <sup>+</sup> cells were increased in response to DOXO, mainly in human cardiac mesenchymal progenitor cells (CmPC), a subpopulation with regenerative potential. Our in vitro results showed a CXCR4 induction after 24 h of DOXO exposure in CmPC. SDF1 administration protected from DOXO-induced cell death and promoted CmPC migration. CXCR4 promoter analysis revealed zinc finger E-box binding homeobox 1 (ZEB1) binding sites. Upon DOXO treatment, ZEB1 binding decreased and RNA-polymerase-II increased, suggesting a DOXO-mediated transcriptional increase in CXCR4. Indeed, DOXO induced the upregulation of miR-200c, that directly targets ZEB1. SDF1 administration in DOXO-treated mice partially reverted the adverse remodeling, decreasing left ventricular (LV) end diastolic volume, LV ejection fraction and LV anterior wall thickness in diastole, recovering LV end systolic pressure and reducing±dP/dt. Moreover, in vivo administration of SDF1 partially reverted DOXO-induced miR-200c and p53 protein upregulation in mouse hearts. In addition, downmodulation of ZEB1 mRNA and protein by DOXO was significantly increased by SDF1. In keeping, p21 mRNA, that is induced by p53 and inhibited by ZEB1, is induced by DOXO treatment and is decreased by SDF1 administration. This study showed new players of the DOXO-induced cardiotoxicity, that can be exploited to ameliorate DOXO-associated cardiomyopathy
Safety and efficacy evaluation in vivo of a cationic nucleolipid nanosystem for the nanodelivery of a ruthenium(Iii) complex with superior anticancer bioactivity
Selectivity and efficacy towards target cancer cells, as well as biocompatibility, are current challenges of advanced chemotherapy powering the discovery of unconventional metalâbased drugs and the search for novel therapeutic approaches. Among secondâgeneration metalâbased chemotherapeutics, ruthenium complexes have demonstrated promising anticancer activity cou-pled to minimal toxicity profiles and peculiar biochemical features. In this context, our research group has recently focused on a bioactive Ru(III) complexânamed AziRuâincorporated into a suite of ad hoc designed nucleolipid nanosystems to ensure its chemical stability and delivery. In-deed, we proved that the structure and properties of decorated nucleolipids can have a major impact on the anticancer activity of the ruthenium core. Moving in this direction, here we describe a preclinical study performed by a mouse xenograft model of human breast cancer to establish safety and efficacy in vivo of a cationic Ru(III)âbased nucleolipid formulation, named HoThyRu/DOTAP, endowed with superior antiproliferative activity. The results show a remarkable reduction in tu-mour with no evidence of animal suffering. Blood diagnostics, as well as biochemical analysis in both acute and chronic treated animal groups, demonstrate a good tolerability profile at the therapeutic regimen, with 100% of mice survival and no indication of toxicity. In addition, ruthenium plasma concentration analysis and tissue bioaccumulation were determined via appropriate sam-pling and ICPâMS analysis. Overall, this study supports both the efficacy of our Ruâcontaining nanosystem versus a human breast cancer model and its safety in vivo through wellâtolerated animal biological responses, envisaging a possible forthcoming use in clinical trials
- âŠ