5,246 research outputs found
Direct solution of the hard pomeron problem for arbitrary conformal weight
A new method is applied to solve the Baxter equation for the one dimensional
system of noncompact spins. Dynamics of such an ensemble is equivalent to that
of a set of reggeized gluons exchanged in the high energy limit of QCD
amplitudes. The technique offers more insight into the old calculation of the
intercept of hard Pomeron, and provides new results in the odderon channel.Comment: Contribution to the ICHEP96 Conference, July 1996, Warsaw, Poland.
LaTeX, 4 pages, 3 epsf figures, includes modified stwol.sty file. Some
references were revise
A study of the influence of Hg(6(3)P2) population in a low-pressure discharge on mercury ion emission at 194.2 nm
A low-pressure mercury-argon discharge, similar to the type existing in the mercury lamp for the trapped-ion standard, is probed with a new technique of laser spectroscopy to determine the influence of the Hg(6 3P(sub 2)) population on discharge emission. The discharge is excited with inductively coupled rf power. Variations in the intensity of emission lines in the discharge were examined as lambda = 546.1 nm light from a continuous wave (CW) laser excited the Hg(6 3P(sub 2)) to (7 3S (sub 1)) transition. The spectrum of the discharge viewed in the region of laser irradiation showed increased emission in lambda = 546.1, 435.8, 404.7, 253.7, and 194.2 nm lines. Other lines in Hg I exhibited a decrease in emission. When the discharge was viewed outside the region of laser irradiation, all lines exhibited an increased emission. Based on these results, it is concluded that the dominant mechanism for the excitation of higher lying levels of mercury is the the electron-impact excitation via the 3P(sub 2) level. The depopulation of this metastable is also responsible for the observed increase in the electron temperature when the laser irradiates the discharge. It is also concluded that the 3P(sub 2) metastable level of mercury does not play a significant role in the excitation of the 3P(sub 1/2) level of mercury ion
Simple analytic potentials for linear ion traps
A simple analytical model was developed for the electric and ponderomotive (trapping) potentials in linear ion traps. This model was used to calculate the required voltage drive to a mercury trap, and the result compares well with experiments. The model gives a detailed picture of the geometric shape of the trapping potenital and allows an accurate calculation of the well depth. The simplicity of the model allowed an investigation of related, more exotic trap designs which may have advantages in light-collection efficiency
Solution of the Odderon Problem
The intercept of the odderon trajectory is derived, by finding the spectrum
of the second integral of motion of the three reggeon system in high energy
QCD. When combined with earlier solution of the appropriate Baxter equation,
this leads to the determination of the low lying states of that system. In
particular, the energy of the lowest state gives the intercept of the odderon
alpha_O(0)=1-0.2472 alpha_s N_c/pi.Comment: 11 pages, 2 Postscript figure
An apparatus for the electrodynamic containment of charged macroparticles
The dynamic moition of the ions contained in the trapped (199)Hg+ frequency standard contributes to the stability of the standard. In order to study these dynamics, a macroscopic analog of the (199)Hg+ trap is constructed. Containment of micron-sized particles in this trap allows direct visual observation of the particles' motion. Influenced by the confining fields and their own Coulomb repulsion, the particles can form stable arrays
Real symmetric random matrices and paths counting
Exact evaluation of is here performed for real symmetric
matrices of arbitrary order , up to some integer , where the matrix
entries are independent identically distributed random variables, with an
arbitrary probability distribution.
These expectations are polynomials in the moments of the matrix entries ;
they provide useful information on the spectral density of the ensemble in the
large limit. They also are a straightforward tool to examine a variety of
rescalings of the entries in the large limit.Comment: 23 pages, 10 figures, revised pape
Multiplication law and S transform for non-hermitian random matrices
We derive a multiplication law for free non-hermitian random matrices
allowing for an easy reconstruction of the two-dimensional eigenvalue
distribution of the product ensemble from the characteristics of the individual
ensembles. We define the corresponding non-hermitian S transform being a
natural generalization of the Voiculescu S transform. In addition we extend the
classical hermitian S transform approach to deal with the situation when the
random matrix ensemble factors have vanishing mean including the case when both
of them are centered. We use planar diagrammatic techniques to derive these
results.Comment: 25 pages + 11 figure
- …