236 research outputs found
The impact of binary-star yields on the spectra of galaxies
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions
Validation of stellar population and kinematical analysis of galaxies
3D spectroscopy produces hundreds of spectra from which maps of the
characteristics of stellar populations (age-metallicity) and internal
kinematics of galaxies can be derived. We carried on simulations to assess the
reliability of inversion methods and to define the requirements for future
observations. We quantify the biases and show that to minimize the errors on
the kinematics, age and metallicity (in a given observing time) the size of the
spatial elements and the spectral dispersion should be chosen to obtain an
instrumental velocity dispersion comparable to the physical dispersion.Comment: 5 pages, 3 figures, extended version of a poster proceeding to appear
in "Science Perspectives for 3D Spectroscopy", eds. M. Kissler-Patig, M. M.
Roth and J. R. Walsh, ESO Astrophysics Symposia. (The two last pages with
figures are not in the conference proceedings.
Experimental Investigation of Eccentricity Ratio, Friction, and Oil Flow of Short Journal Bearings
An experimental investigation was conducted to obtain performance data on bearings of length-diameter ratios of 1, 1/2, and 1/4 for comparison with theoretical curves. A 1.375-inch-diameter bearing was tested at speeds up to 6000 rpm and with unit loads from 0 to 900 pounds per square inch. Experimental data for eccentricity ratio and friction followed single lines when plotted against a theoretically derived capacity number, which is equal to Sommerfeld number times the square of the length-diameter ratio. The form of the capacity number indicates that under certain conditions the eccentricity ratio is theoretically independent of bearing diameter. A method of plotting oil flow data as a single line is shown. Methods are also discussed for approximating a maximum bearing temperature and evaluating the effect of deflection or misalignment on the eccentricity ratio at the ends of the bearings
Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda
We search for vast planes of satellites (VPoS) in a high resolution
simulation of the Local Group performed by the CLUES project, which improves
significantly the resolution of former similar studies. We use a simple method
for detecting planar configurations of satellites, and validate it on the known
plane of M31. We implement a range of prescriptions for modelling the satellite
populations, roughly reproducing the variety of recipes used in the literature,
and investigate the occurence and properties of planar structures in these
populations. The structure of the simulated satellite systems is strongly
non-random and contains planes of satellites, predominantly co-rotating, with,
in some cases, sizes comparable to the plane observed in M31 by Ibata et al..
However the latter is slightly richer in satellites, slightly thinner and has
stronger co-rotation, which makes it stand out as overall more exceptional than
the simulated planes, when compared to a random population. Although the
simulated planes we find are generally dominated by one real structure, forming
its backbone, they are also partly fortuitous and are thus not kinematically
coherent structures as a whole. Provided that the simulated and observed planes
of satellites are indeed of the same nature, our results suggest that the VPoS
of M31 is not a coherent disc and that one third to one half of its satellites
must have large proper motions perpendicular to the plane
High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair
We present the results of a set of numerical simulations aimed at studying
reionization at galactic scale. We use a high resolution simulation of the
formation of the Milky Way-M31 system to simulate the reionization of the local
group. The reionization calculation was performed with the post-processing
radiative transfer code ATON and the underlying cosmological simulation was
performed as part of the CLUES project. We vary the source models to bracket
the range of source properties used in the literature. We investigate the
structure and propagation of the galatic ionization fronts by a visual
examination of our reionization maps. Within the progenitors we find that
reionization is patchy, and proceeds locally inside out. The process becomes
patchier with decreasing source photon output. It is generally dominated by one
major HII region and 1-4 additional isolated smaller bubbles, which eventually
overlap. Higher emissivity results in faster and earlier local reionization. In
all models, the reionization of the Milky Way and M31 are similar in duration,
i.e. between 203 Myr and 22 Myr depending on the source model, placing their
zreion between 8.4 and 13.7. In all models except the most extreme, the MW and
M31 progenitors reionize internally, ignoring each other, despite being
relatively close to each other even during the epoch of reionization. Only in
the case of strong supernova feedback suppressing star formation in haloes less
massive than 10^9 M_sun, and using our highest emissivity, we find that the MW
is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl
- …