78 research outputs found

    Spin effects in single-electron tunneling in magnetic junctions

    Full text link
    Spin dependent single electron tunneling in ferromagnetic double junctions is analysed theoretically in the limit of sequential tunneling. The influence of discrete energy spectrum of the central electrode (island)on the spin accumulation, spin fluctuations and tunnel magnetoresistance is analysed numerically in the case of a nonmagnetic island. It is shown that spin fluctuations are significant in magnetic as well as in nonmagnetic junctions.Comment: 14 pages, 3 eps-figures include

    Dynamical correlations in electronic transport through a system of coupled quantum dots

    Full text link
    Current auto- and cross-correlations are studied in a system of two capacitively coupled quantum dots. We are interested in a role of Coulomb interaction in dynamical correlations, which occur outside the Coulomb blockade region (for high bias). After decomposition of the current correlation functions into contributions between individual tunneling events, we can show which of them are relevant and lead to sub-/supper-Poissonian shot noise and negative/positive cross-correlations. The results are differentiated for a weak and strong inter-dot coupling. Interesting results are for the strong coupling case when electron transfer in one of the channel is strongly correlated with charge drag in the second channel. We show that cross-correlations are non-monotonic functions of bias voltage and they are in general negative (except some cases with asymmetric tunnel resistances). This is effect of local potential fluctuations correlated by Coulomb interaction, which mimics the Pauli exclusion principle

    Interacting Coronal Mass Ejections And Solar Energetic Particles

    Get PDF
    We studied the association between solar energetic particle (SEP) events and coronal mass ejections (CMEs) and found that CME interaction is an important aspect of SEP production. Each SEP event was associated with a primary CME that is faster and wider than average CMEs and originated from west of E45°. For most of the SEP events, the primary CME overtakes one or more slower CMEs within a heliocentric distance of ∼20 R⊙. In an inverse study, we found that for all the fast (speed greater than 900 km s^(-1)) and wide (width greater than 60°) western hemispheric frontside CMEs during the study period, the SEP-associated CMEs were ∼4 times more likely to be preceded by CME interaction than the SEP-poor CMEs; i.e., CME interaction is a good discriminator between SEP-poor and SEP-associated CMEs. We infer that the efficiency of the CME-driven shocks is enhanced as they propagate through the preceding CMEs and that they accelerate SEPs from the material of the preceding CMEs rather than from the quiet solar wind. We also found a high degree of association between major SEP events and interplanetary type II radio bursts, suggesting that proton accelerators are also good electron accelerators

    Shot noise in ferromagnetic single electron tunneling devices

    Full text link
    Frequency dependent current noise in ferromagnetic double junctions with Coulomb blockade is studied theoretically in the limit of sequential tunneling. Two different relaxation processes are found in the correlations between spin polarized tunneling currents; low frequency spin fluctuations and high frequency charge fluctuations. Spin accumulation in strongly asymmetric junctions is shown to lead to a negative differential resistance. We also show that large spin noise activated in the range of negative differential resistance gives rise to a significant enhancement of the current noise.Comment: 8 pages, 13 eps-figures include

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
    corecore