506 research outputs found

    A proximity-based method to identify genomic regions correlated with a continuously varying environmental variable

    Get PDF
    Knowledge of markers in the human genome which show spatial patterns and display extreme correlation with different environmental determinants play an important role in understanding the factors which affect the biological evolution of our species. We used the genotype data of more than half a million single nucleotide polymorphisms (SNPs) from the data set Human Genome Diversity Panel (HGDP-CEPH -CEPH) and we calculated Spearman's correlation between absolute latitude and one of the two allele frequen- cies of each SNP. We selected SNPs with a correlation coefficient within the upper 1% tail of the distribution. We then used a criterion of proximity between significant variants to focus on DNA regions showing a continuous signal over a portion of the genome. Based on external information and genome annotations, we demonstrated that most regions with the strongest signals also have biological relevance. We believe this proximity requirement adds an edge to our novel method compared to the existing literature, highlighting several genes (for example DTNB, DOT1L, TPCN2, RELN, MSRA, NRG3) related to body size or shape, human height, hair color, and schizophrenia. Our approach can be applied generally to any measure of association between polymorphic frequencies and continuously varying environmental variable

    Serum MicroRNA-191-5p Levels in Vascular Complications of Type 1 Diabetes: The EURODIAB Prospective Complications Study

    Get PDF
    CONTEXT: MicroRNA-191-5p regulates key cellular processes involved in the pathogenesis of diabetic complications such as angiogenesis, extracellular matrix deposition, and inflammation. However, no data on circulating microRNA-191-5p in the chronic complications of diabetes are available. OBJECTIVE: To assess whether serum levels of microRNA-191-5p were associated with micro- and macrovascular disease in a large cohort of subjects with type 1 diabetes mellitus (DM1) from the EURODIAB Prospective Complication Study. DESIGN AND SETTING: Levels of microRNA-191-5p were measured by quantitative PCR in 420 patients with DM1 recruited as part of the cross-sectional analysis of the EURODIAB Prospective Complication Study. Cases (n = 277) were subjects with nephropathy and/or retinopathy and/or cardiovascular disease (CVD). Controls (n = 143) were patients without complications. Logistic regression analysis was performed to evaluate the potential independent association of microRNA-191-5p levels with chronic complications of diabetes. RESULTS: Levels of microRNA-191-5p were significantly reduced (P < .001) in cases compared with controls even after adjustment for age, sex, and diabetes duration. Logistic regression analysis revealed that microRNA-191-5p was negatively associated with a 58% reduced odds ratio (OR) of chronic diabetes complications, specifically CVD, micro-macroalbuminuria, and retinopathy (OR, 0.42; 95% CI, 0.23-0.77), independent of age, sex, physical activity, educational levels, diabetes duration, glycated hemoglobin, total insulin dose, hypertension, smoking, total cholesterol, albumin excretion rate, estimated glomerular filtration rate, serum vascular cell adhesion molecule-1, and tumor necrosis factor-α. Analyses performed separately for each complication demonstrated a significant independent association with albuminuria (OR, 0.36; 95% CI, (0.18-0.75) and CVD (OR, 0.34; 95% CI, 0.16-0.70). CONCLUSIONS: In DM1 subjects, microRNA-191-5p is inversely associated with vascular chronic complications of diabetes

    Genetic and epigenetic characterization of a discordant kmt2a/aff1-rearranged infant monozygotic twin pair

    Get PDF
    The KMT2A/AFF1 rearrangement is associated with an unfavorable prognosis in infant acute lymphocytic leukemia (ALL). Discordant ALL in monozygotic twins is uncommon and represents an attractive resource to evaluate intrauterine environment–genetic interplay in ALL. Mutational and epigenetic profiles were characterized for a discordant KMT2A/AFF1-rearranged infant monozygotic twin pair and their parents, and they were compared to three independent KMT2A/AFF1-positive ALL infants, in which the DNA methylation and gene expression profiles were investigated. A de novo Q61H NRAS mutation was detected in the affected twin at diagnosis and backtracked in both twins at birth. The KMT2A/AFF1 rearrangement was absent at birth in both twins. Genetic analyses conducted at birth gave more insights into the timing of the mutation hit. We identified correlations between DNA methylation and gene expression changes for 32 genes in the three independent affected versus remitted patients. The strongest correlations were observed for the RAB32, PDK4, CXCL3, RANBP17, and MACROD2 genes. This epigenetic signature could be a putative target for the development of novel epigenetic-based therapies and could help in explaining the molecular mechanisms characterizing ALL infants with KMT2A/AFF1 fusions

    Functional and clinical implications of genetic structure in 1686 Italian exomes

    Get PDF
    To reconstruct the phenotypical and clinical implications of the Italian genetic structure, we thoroughly analyzed a whole-exome sequencing data set comprised of 1686 healthy Italian individuals. We found six previously unreported variants with remarkable frequency differences between Northern and Southern Italy in the HERC2, OR52R1, ADH1B, and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic, risk factors, or drug response in ClinVar) with significant frequency differences between Italy and Europe. We then explored putatively pathogenic variants in the Italian exome. On average, our Italian individuals carried 16.6 protein-truncating variants (PTVs), with 2.5% of the population having a PTV in one of the 59 American College of Medical Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes (KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other public databases, like gnomAD, we showed the importance of population-specific databases for a more accurate assessment of variant pathogenicity. For this reason, we made aggregated frequencies from our data set publicly available as a tool for both clinicians and researchers (http://nigdb.cineca.it; NIG-ExIT)

    Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals. Description of the diverse and most represented species

    Get PDF
    The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals

    Epigenetic signatures of internal migration in Italy.

    Get PDF
    Observational studies have suggested that the risks of non-communicable diseases in voluntary migrants become similar to those in the host population after one or more generations, supporting the hypothesis that these diseases have a predominantly environmental (rather than inherited) origin. However, no study has been conducted thus far to identify alterations at the molecular level that might mediate these changes in disease risk after migration
    • …
    corecore